Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity fro...Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.展开更多
We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization rel...We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization relaxation rate S = d ln(-M)/d ln(t) shows a temperature-insensitive plateau with a value comparable to that of low-temperature superconductors, which can be explained within the framework of collective creep theory. It then enters into a second collective creep regime when the temperature increases. Interestingly, the relaxation rate below 20 K tends to reach saturation with increasing the field. However, it changes to a power law dependence on the field at a higher temperature. A vortex phase diagram composed of the collective and the plastic creep regions is shown. Benefiting from the strong grain boundary pinning, the advanced Bal22 superconducting tape has potential to be applied not only in liquid helium but also in liquid hydrogen or at temperatures accessible with cryocoolers.展开更多
Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers wit...Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations.展开更多
Ag-sheathed BiPbSrCaO(2223)superconducting tapes prepared by the powder-in-tube technique were inVeSgated. The Mswt of M layCr and the Jc at 77 K are spengly dspendent on the amouDt of cold wotheg and annchg condition...Ag-sheathed BiPbSrCaO(2223)superconducting tapes prepared by the powder-in-tube technique were inVeSgated. The Mswt of M layCr and the Jc at 77 K are spengly dspendent on the amouDt of cold wotheg and annchg condition. The Jc bo by uhahal tw aha drawing and rolling. The OPbown annwtg theperawt, boe and coohag de tO madrihe Jc vaiueS were in the range 84()-- 850t, 1bo^2bo h and 50-- loot / h, nyhvejy. The mndum tuSPOrt Jt at 77 K under zero mopetic field was l.33 x l04 A / cm2.展开更多
Owing to the high performance, the second generation (2 G) high Tc superconducting tapes based on yttrium barium copper oxide have attracted much attention of the researchers worldwide to develop the processing tech...Owing to the high performance, the second generation (2 G) high Tc superconducting tapes based on yttrium barium copper oxide have attracted much attention of the researchers worldwide to develop the processing techniques for application. In recent years, a series of the achievements have made the 2 G tapes become the focus of the superconductor research. An overview of the recent progress of 2 G superconductor tapes was provided,展开更多
The microstructures of the YBCO composited superconducting tapes with different J_c were analysed by TEM.The relationship between microstructure and J_c of the tapes is discussed in detail.It is demonstrated that J_c ...The microstructures of the YBCO composited superconducting tapes with different J_c were analysed by TEM.The relationship between microstructure and J_c of the tapes is discussed in detail.It is demonstrated that J_c value of the tapes increases significantly with the decrease in the width of grain boundary,increase of the twin density and the reducing of the amount of precipitates at grain boundary.At grain boundary of the tapes,howev- er,small amount of non-superconducting phases can-not be avoided.For the fabrication of high J_c YBCO com- posited tapes,it is very important to improve the microstructure of the superconductor perfectly.展开更多
Bi-2223 precursor powders are prepared by both oxalate co-precipitation(CP) and spray pyrolysis(SP) methods.The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically st...Bi-2223 precursor powders are prepared by both oxalate co-precipitation(CP) and spray pyrolysis(SP) methods.The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically studied. Compared to the CP method, SP powder exhibits spherical particle before calcination and smaller particle size after calcinations with more uniform chemical composition, which leads to a lower reaction temperature during calcination process for Bi-2223 tapes. Meanwhile, the non-superconducting phases in SP powder are more uniformly distributed with smaller particle sizes. These features result in finer homogeneity of critical current in large-length of Bi-2223 tape, higher density of filaments and better texture after heat treatment. Therefore,the SP method could be considered as a better route to prepare precursor powder for large-length Bi-2223 tape fabrication.展开更多
Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape...Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different high-temperature superconductor (HTSC) systems and possible factors affecting the strength. A comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally, we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in the HTSC.展开更多
Highly textured (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes have been fabricated by means of magnetic-field and vibration technique. This method is an effective way of improving the degree of grain alignment and density...Highly textured (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes have been fabricated by means of magnetic-field and vibration technique. This method is an effective way of improving the degree of grain alignment and density of oxide core in tapes after heat treatment and pressing cycles.Jc of above 20% was increased than that without treatment.展开更多
Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides.Here,we report nuclear magnetic resonance(NMR) studies on LiFeP and LiFeAs which have...Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides.Here,we report nuclear magnetic resonance(NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms.The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth λ_(L).We find that λ_(L) saturates below T~0.2 T_(C) in LiFeAs,where T_(C) is the superconducting transition temperature,indicating nodeless superconducting gaps.Furthermore,by using a two-gaps model,we simulate the temperature dependence of λ_(L) and obtain the superconducting gaps of LiFeAs,as Δ_(1)=1.2 kB T_(C) and Δ_(2)=2.8 k_(B)T_(C),in agreement with previous result from spin-lattice relaxation.For LiFeP,in contrast,λ_(L) does not show any saturation down to T~0.03 T_(C),indicating nodes in the superconducting gap function.Finally,we demonstrate that strong spin fluctuations with diffusive characteristics exist in LiFeP,as in some cuprate high temperature superconductors.展开更多
Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductiv...Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration.展开更多
The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hy...The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hydrothermal epitaxy method. Among the TMs, the elements of Mn and Co adjacent to Fe are observed to be incorporated into the crystal lattice more easily. It is suggested that the doped TMs mainly occupy the iron sites of the intercalated(Li,Fe)OH layers rather than those of the superconducting Fe Se layers. We find that the critical current density J_(c) can be enhanced much more strongly by the Mn dopant than the other TMs, while the critical temperature T_(c) is weakly affected by the TM doping.展开更多
We investigate the band structure of Fe-based superconductors using the first-principle method of density-functional theory. We calculated the band structure and the density of states at the Fermi level for ReFeAsO (R...We investigate the band structure of Fe-based superconductors using the first-principle method of density-functional theory. We calculated the band structure and the density of states at the Fermi level for ReFeAsO (Re = Sm, Er) superconductors. Our calculations indicate that the maximum critical superconducting transition temperature Tc will be observed for compounds with Sm and Er at 55 and 46 K, respectively.展开更多
Ag-sheathed(Bi,Pb)_2Sr_2Ca_2Cu_3O_x tapes were fabricated by a powder-in-tube method.A high critical current density of 2.8×10~4 A/cm^2 at 77K,0T and 4×10~4 A/cm^2 at 4.2K,5T(H⊥ab),6.3× 10~4 A/cm^2 at ...Ag-sheathed(Bi,Pb)_2Sr_2Ca_2Cu_3O_x tapes were fabricated by a powder-in-tube method.A high critical current density of 2.8×10~4 A/cm^2 at 77K,0T and 4×10~4 A/cm^2 at 4.2K,5T(H⊥ab),6.3× 10~4 A/cm^2 at 4.2K,7T(H∥ab)is obtained.The microstructure of the tapes with high J_c values was in- vestigated by transmission electron microscope(TEM)and X-ray energy dispersive spectrum system(EDS). For comparison,a tape fabricated by a different procedure with a low J_c of about 1×10~4 A/cm^2 at 77K,0T was also studied.The relationship between J_c and microstructure of the tapes and the effect of the processing on the microstructure and J_c were elucidated.展开更多
(Received 8 June 2013) Our recent progress on the preparation of a series of new FeSe-based superconductors and the clarification of SC phases in potassium-intercalated iron selenides are reviewed here. By the liqu...(Received 8 June 2013) Our recent progress on the preparation of a series of new FeSe-based superconductors and the clarification of SC phases in potassium-intercalated iron selenides are reviewed here. By the liquid ammonia method, metals Li, Na, Ca, Sr, Ba, Eu, and Yb are intercalated in between FeSe layers and form superconductors with transition temperatures of 30 K^46 K, which cannot be obtained by high-temperature routes. In the potassium-intercalated iron selenides, we demonstrate that at least two SC phases exist, KxFe2Se2(NH3)y (x 0.3 and 0.6), determined mainly by the concentration of potassium. NH3 has little, if any, effect on superconductivity, but plays an important role in stabilizing the structures. All these results provide a new starting point for studying the intrinsic properties of this family of superconductors, especially for their particular electronic structures.展开更多
The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant B1g-type strain effect on superconductivity is observed in underdoped i...The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant B1g-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe_(1-x)Co_(x))_(2)As_(2),suggesting a strong interplay between nematicity and superconductivity.Since the long-range spin order is absent in FeSe superconductor,whether a similar strain effect could be also observed or not is an interesting question.Here,by utilizing a flexible film as substrate,we successfully achieve a wide-range-strain tuning of FeSe thin flake,in which both the tensile and compressive strain could reach up to~0.7%,and systematically study the strain effect on both superconducting and nematic transition(T_(c)and Ts)in the FeSe thin flake.Our results reveal a predominant A1g-type strain effect on T_(c).Meanwhile,Ts exhibits a monotonic anti-correlation with T_(c)and the maximum T_(c)reaches to 12 K when Ts is strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe_(1-x)Co_(x))_(2)As_(2),the absence of B1g-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity.In addition,our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.展开更多
Nematic phase intertwines closely with high-Tc superconductivity in iron-based superconductors.Its mechanism,which is closely related to the pairing mechanism of superconductivity,still remains controversial.Comprehen...Nematic phase intertwines closely with high-Tc superconductivity in iron-based superconductors.Its mechanism,which is closely related to the pairing mechanism of superconductivity,still remains controversial.Comprehensive characterization of the electronic state reconstruction in the nematic phase is thus crucial.However,most experiments focus only on the reconstruction of band dispersions.Another important characteristic of electronic state,the spectral weight,has not been studied in details so far.Here,we studied the spectral weight transfer in the nematic phase of FeSe0.9S0.1 using angle-resolved photoemission spectroscopy and in-situ detwinning technique.There are two elliptical electron pockets overlapping with each other orthogonally at the Brillouin zone corner.We found that,upon cooling,one electron pocket loses spectral weight and fades away,while the other electron pocket gains spectral weight and becomes pronounced.Our results show that the symmetry breaking of the electronic state is manifested by not only the anisotropic band dispersion but also the band-selective modulation of the spectral weight.Our observation completes our understanding of the nematic electronic state,and put strong constraints on the theoretical models.It further provides crucial clues to understand the gap anisotropy and orbital-selective pairing in iron-selenide superconductors.展开更多
We present magnetotransport studies on a series of BaFe2_xNixAs2 (0.03 〈 x 〈 0.10) single crystals. In the un- derdoped (x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a pea...We present magnetotransport studies on a series of BaFe2_xNixAs2 (0.03 〈 x 〈 0.10) single crystals. In the un- derdoped (x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a peak at 22 K, which is associated with the onset of filamentary superconductivity (FLSC). FLSC is suppressed by an external magnetic field in a manner similar to the suppression of bulk superconductivity in an optimally-doped (x = 0.10) compound, suggesting the same possible origin as the bulk superconductivity. Our magnetoresistivity measurements reveal that FLSC persists up to the optimal doping and disappears in the overdoped regime where the long-range antiferromagnetic order is completely suppressed, pointing to a close relation between FLSC and the magnetic order.展开更多
The recent discovery of high-temperature superconductivity in iron-based pnictides (chalcogenides) not only trig- gers tremendous enthusiasm in searching for new superconducting materials, but also opens a new avenu...The recent discovery of high-temperature superconductivity in iron-based pnictides (chalcogenides) not only trig- gers tremendous enthusiasm in searching for new superconducting materials, but also opens a new avenue to the study of the Kondo physics. CeFeAsO is a parent compound of the 1111-type iron-based superconductors. It shows 3d- antiferromagnetic (AFM) ordering below 139 K and 4f-AFM ordering below 4 K. On the other hand, the phosphide CeFePO is a ferromagnetically corelated heavy-fermion (HF) metal with Kondo scale TK 10 K. These properties set up a new platform for research of the interplay among magnetism, Kondo effect, and superconductivity (SC). In this review, we present the recent progress in the study of chemical pressure effect in CeFeAsOl_yFy (y = 0 and 0.05). This P/As-doping in CeFeAsO serves as an effective controlling parameter which leads to two magnetic critical points, Xcl -- 0.4 and Xc2 - 0.92, associated with suppression of 3d and 4f magnetism, respectively. We also observe a turning point of AFM-FM ordering of Ce3+ moment at Xc3 - 0.37. The SC is absent in the phase diagram, which is attributed to the destruction to Cooper pair by Ce-FM fluctuations in the vicinity of Xcl. We continue to investigate CeFeAsl-xPxO0.95Fo.os. With the separation of xcl and xc3, this chemical pressure results in a broad SC region 0〈 x 〈 0.53, while the original HF behavior is driven away by 5% F- doping. Different roles of P and F dopings are addressed, and the interplay between SC and Ce-4f magnetism is also discussed.展开更多
文摘Superconducting transition temperature(Tc),as a crucial parameter,exploring its relationship with various macroscopic and microscopic factors helps to understand the mechanism of high-temperature superconductivity from multiple perspectives,aiding in a multidimensional comprehension of high-temperature superconductivity mechanisms.Drawing inspiration from the block-layer structure models of cuprate superconductors,we computationally investigated the interlayer interaction energies in the 12442-type iron-based superconducting materials AkCa_(2)Fe_(4)As_(4)F_(2)(Ak=K,Rb,Cs)systems based on the block-layer model and explored their relationship with Tc.We observed that an increase in interlayer combinative energy leads to a decrease in Tc,while conversely,a decrease in interlayer combination energy results in an increase in Tc.Further,we found that the contribution of the Fe 3d band structure,especially the 3dz2 orbital,to charge transfer is significant.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51402292 and 51677179the International Partnership Program of the Chinese Academy of Sciences under Grant Nos GJHZ1775 and 182111KYSB20160014+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant No NoQYZDJ-SSW-JSC026the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB25000000
文摘We report the temperature, magnetic field and time dependences of magnetization in advanced Ba122 superconducting tapes. The sample exhibits peculiar vortex creep behavior. Below 10 K, the normalized magnetization relaxation rate S = d ln(-M)/d ln(t) shows a temperature-insensitive plateau with a value comparable to that of low-temperature superconductors, which can be explained within the framework of collective creep theory. It then enters into a second collective creep regime when the temperature increases. Interestingly, the relaxation rate below 20 K tends to reach saturation with increasing the field. However, it changes to a power law dependence on the field at a higher temperature. A vortex phase diagram composed of the collective and the plastic creep regions is shown. Benefiting from the strong grain boundary pinning, the advanced Bal22 superconducting tape has potential to be applied not only in liquid helium but also in liquid hydrogen or at temperatures accessible with cryocoolers.
基金Project supported by the National Natural Science Foundation of China(Nos.U2241267,1217215511872195)。
文摘Cables composed of rare-earth barium copper oxide(REBCO)tapes have been extensively used in various superconducting devices.In recent years,conductor on round core(CORC)cable has drawn the attention of researchers with its outstanding current-carrying capacity and mechanical properties.The REBCO tapes are wound spirally on the surface of CORC cable.Under extreme loadings,the REBCO tapes with layered composite structures are vulnerable,which can lead to degradation of critical current and even quenching of superconducting devices.In this paper,we simulate the deformation of CORC cable under external loads,and analyze the damage inside the tape with the cohesive zone model(CZM).Firstly,the fabrication and cabling of CORC are simulated,and the stresses and strains generated in the tape are extracted as the initial condition of the next step.Then,the tension and bending loads are applied to CORC cable,and the damage distribution inside the tape is presented.In addition,the effects of some parameters on the damage are discussed during the bending simulations.
文摘Ag-sheathed BiPbSrCaO(2223)superconducting tapes prepared by the powder-in-tube technique were inVeSgated. The Mswt of M layCr and the Jc at 77 K are spengly dspendent on the amouDt of cold wotheg and annchg condition. The Jc bo by uhahal tw aha drawing and rolling. The OPbown annwtg theperawt, boe and coohag de tO madrihe Jc vaiueS were in the range 84()-- 850t, 1bo^2bo h and 50-- loot / h, nyhvejy. The mndum tuSPOrt Jt at 77 K under zero mopetic field was l.33 x l04 A / cm2.
文摘Owing to the high performance, the second generation (2 G) high Tc superconducting tapes based on yttrium barium copper oxide have attracted much attention of the researchers worldwide to develop the processing techniques for application. In recent years, a series of the achievements have made the 2 G tapes become the focus of the superconductor research. An overview of the recent progress of 2 G superconductor tapes was provided,
文摘The microstructures of the YBCO composited superconducting tapes with different J_c were analysed by TEM.The relationship between microstructure and J_c of the tapes is discussed in detail.It is demonstrated that J_c value of the tapes increases significantly with the decrease in the width of grain boundary,increase of the twin density and the reducing of the amount of precipitates at grain boundary.At grain boundary of the tapes,howev- er,small amount of non-superconducting phases can-not be avoided.For the fabrication of high J_c YBCO com- posited tapes,it is very important to improve the microstructure of the superconductor perfectly.
文摘Bi-2223 precursor powders are prepared by both oxalate co-precipitation(CP) and spray pyrolysis(SP) methods.The influence of fabrication methods on the superconducting properties of Bi-2223 tapes are systematically studied. Compared to the CP method, SP powder exhibits spherical particle before calcination and smaller particle size after calcinations with more uniform chemical composition, which leads to a lower reaction temperature during calcination process for Bi-2223 tapes. Meanwhile, the non-superconducting phases in SP powder are more uniformly distributed with smaller particle sizes. These features result in finer homogeneity of critical current in large-length of Bi-2223 tape, higher density of filaments and better texture after heat treatment. Therefore,the SP method could be considered as a better route to prepare precursor powder for large-length Bi-2223 tape fabrication.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00112 and 2012CB921701)
文摘Electron-phonon coupling (EPC) in cuprate and iron-based superconducting systems, as revealed by Raman scat- tering, is briefly reviewed. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different high-temperature superconductor (HTSC) systems and possible factors affecting the strength. A comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally, we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in the HTSC.
文摘Highly textured (Bi,Pb)2Sr2Ca2Cu3Ox superconducting tapes have been fabricated by means of magnetic-field and vibration technique. This method is an effective way of improving the degree of grain alignment and density of oxide core in tapes after heat treatment and pressing cycles.Jc of above 20% was increased than that without treatment.
基金Project supported by the Natioanl Natural Science Foundation of China(Grant Nos.11904023,11974405,11674377,and 11634015)the Fundamental Research Funds for the Central Universities,China(Grant No.2018NTST22)+1 种基金the National Key R&D Program of China(Grant Nos.2016YFA0300502 and2017YFA0302904)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33010100)。
文摘Identifying the uniqueness of FeP-based superconductors may shed new lights on the mechanism of superconductivity in iron-pnictides.Here,we report nuclear magnetic resonance(NMR) studies on LiFeP and LiFeAs which have the same crystal structure but different pnictogen atoms.The NMR spectrum is sensitive to inhomogeneous magnetic fields in the vortex state and can provide the information on the superconducting pairing symmetry through the temperature dependence of London penetration depth λ_(L).We find that λ_(L) saturates below T~0.2 T_(C) in LiFeAs,where T_(C) is the superconducting transition temperature,indicating nodeless superconducting gaps.Furthermore,by using a two-gaps model,we simulate the temperature dependence of λ_(L) and obtain the superconducting gaps of LiFeAs,as Δ_(1)=1.2 kB T_(C) and Δ_(2)=2.8 k_(B)T_(C),in agreement with previous result from spin-lattice relaxation.For LiFeP,in contrast,λ_(L) does not show any saturation down to T~0.03 T_(C),indicating nodes in the superconducting gap function.Finally,we demonstrate that strong spin fluctuations with diffusive characteristics exist in LiFeP,as in some cuprate high temperature superconductors.
基金supported by the National Natural Science Foundation of China(Grant Nos.51322211and 91422303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020100)+1 种基金Beijing Nova Program of China(Grant No.2011096)K.C.Wong Education Foundation,Hong Kong,China
文摘Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0303003 and 2016YFA0300300)the National Natural Science Foundation of China(Grant Nos.11834016 and 11888101)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB33010200 and XDB25000000)the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant Nos.QYZDY-SSW-SLH001 and QYZDY-SSW-SLH008)。
文摘The doping effects of transition metals(TMs = Mn, Co, Ni, and Cu) on the superconducting critical parameters are investigated in the films of iron selenide(Li,Fe)OHFe Se. The samples are grown via a matrix-assisted hydrothermal epitaxy method. Among the TMs, the elements of Mn and Co adjacent to Fe are observed to be incorporated into the crystal lattice more easily. It is suggested that the doped TMs mainly occupy the iron sites of the intercalated(Li,Fe)OH layers rather than those of the superconducting Fe Se layers. We find that the critical current density J_(c) can be enhanced much more strongly by the Mn dopant than the other TMs, while the critical temperature T_(c) is weakly affected by the TM doping.
文摘We investigate the band structure of Fe-based superconductors using the first-principle method of density-functional theory. We calculated the band structure and the density of states at the Fermi level for ReFeAsO (Re = Sm, Er) superconductors. Our calculations indicate that the maximum critical superconducting transition temperature Tc will be observed for compounds with Sm and Er at 55 and 46 K, respectively.
文摘Ag-sheathed(Bi,Pb)_2Sr_2Ca_2Cu_3O_x tapes were fabricated by a powder-in-tube method.A high critical current density of 2.8×10~4 A/cm^2 at 77K,0T and 4×10~4 A/cm^2 at 4.2K,5T(H⊥ab),6.3× 10~4 A/cm^2 at 4.2K,7T(H∥ab)is obtained.The microstructure of the tapes with high J_c values was in- vestigated by transmission electron microscope(TEM)and X-ray energy dispersive spectrum system(EDS). For comparison,a tape fabricated by a different procedure with a low J_c of about 1×10~4 A/cm^2 at 77K,0T was also studied.The relationship between J_c and microstructure of the tapes and the effect of the processing on the microstructure and J_c were elucidated.
基金supported by the National Natural Science Foundation of China(Grant Nos.90922037,51072226,and51202286)the Chinese Academy of Sciences+1 种基金the International Center for Diffraction Data(ICDD)the Beijing Nova Program,China(Grant No.2011096)
文摘(Received 8 June 2013) Our recent progress on the preparation of a series of new FeSe-based superconductors and the clarification of SC phases in potassium-intercalated iron selenides are reviewed here. By the liquid ammonia method, metals Li, Na, Ca, Sr, Ba, Eu, and Yb are intercalated in between FeSe layers and form superconductors with transition temperatures of 30 K^46 K, which cannot be obtained by high-temperature routes. In the potassium-intercalated iron selenides, we demonstrate that at least two SC phases exist, KxFe2Se2(NH3)y (x 0.3 and 0.6), determined mainly by the concentration of potassium. NH3 has little, if any, effect on superconductivity, but plays an important role in stabilizing the structures. All these results provide a new starting point for studying the intrinsic properties of this family of superconductors, especially for their particular electronic structures.
基金Project supported by the National Key R&D Program of China(Grant Nos.2017YFA0303000 and 2016YFA0300201)the National Natural Science Foundation of China(Grant No.11888101)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB25000000)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY160000).
文摘The driving mechanism of nematicity and its twist with superconductivity in iron-based superconductors are still under debate.Recently,a dominant B1g-type strain effect on superconductivity is observed in underdoped iron-pnictides superconductors Ba(Fe_(1-x)Co_(x))_(2)As_(2),suggesting a strong interplay between nematicity and superconductivity.Since the long-range spin order is absent in FeSe superconductor,whether a similar strain effect could be also observed or not is an interesting question.Here,by utilizing a flexible film as substrate,we successfully achieve a wide-range-strain tuning of FeSe thin flake,in which both the tensile and compressive strain could reach up to~0.7%,and systematically study the strain effect on both superconducting and nematic transition(T_(c)and Ts)in the FeSe thin flake.Our results reveal a predominant A1g-type strain effect on T_(c).Meanwhile,Ts exhibits a monotonic anti-correlation with T_(c)and the maximum T_(c)reaches to 12 K when Ts is strongly suppressed under the maximum compressive strain.Finally,in comparison with the results in the underdoped Ba(Fe_(1-x)Co_(x))_(2)As_(2),the absence of B1g-type strain effect in FeSe further supports the role of stripe-type spin fluctuations on superconductivity.In addition,our work also supports that the orbital degree of freedom plays a key role to drive the nematic transition in FeSe.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11888101,91421107,and 11574004)the National Key Research and Development Program of China(Grant Nos.2016YFA0301003 and 2018YFA0305602).
文摘Nematic phase intertwines closely with high-Tc superconductivity in iron-based superconductors.Its mechanism,which is closely related to the pairing mechanism of superconductivity,still remains controversial.Comprehensive characterization of the electronic state reconstruction in the nematic phase is thus crucial.However,most experiments focus only on the reconstruction of band dispersions.Another important characteristic of electronic state,the spectral weight,has not been studied in details so far.Here,we studied the spectral weight transfer in the nematic phase of FeSe0.9S0.1 using angle-resolved photoemission spectroscopy and in-situ detwinning technique.There are two elliptical electron pockets overlapping with each other orthogonally at the Brillouin zone corner.We found that,upon cooling,one electron pocket loses spectral weight and fades away,while the other electron pocket gains spectral weight and becomes pronounced.Our results show that the symmetry breaking of the electronic state is manifested by not only the anisotropic band dispersion but also the band-selective modulation of the spectral weight.Our observation completes our understanding of the nematic electronic state,and put strong constraints on the theoretical models.It further provides crucial clues to understand the gap anisotropy and orbital-selective pairing in iron-selenide superconductors.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB821400,2012CB921302,and 2015CB921303)the National Natural Science Foundation of China(Grant Nos.11274237,91121004,51228201,11004238,and 11374011)
文摘We present magnetotransport studies on a series of BaFe2_xNixAs2 (0.03 〈 x 〈 0.10) single crystals. In the un- derdoped (x = 0.03) non-superconducting sample, the temperature-dependent resistivity exhibits a peak at 22 K, which is associated with the onset of filamentary superconductivity (FLSC). FLSC is suppressed by an external magnetic field in a manner similar to the suppression of bulk superconductivity in an optimally-doped (x = 0.10) compound, suggesting the same possible origin as the bulk superconductivity. Our magnetoresistivity measurements reveal that FLSC persists up to the optimal doping and disappears in the overdoped regime where the long-range antiferromagnetic order is completely suppressed, pointing to a close relation between FLSC and the magnetic order.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00103 and 2010CB923003)the National Natural Science Foundation of China
文摘The recent discovery of high-temperature superconductivity in iron-based pnictides (chalcogenides) not only trig- gers tremendous enthusiasm in searching for new superconducting materials, but also opens a new avenue to the study of the Kondo physics. CeFeAsO is a parent compound of the 1111-type iron-based superconductors. It shows 3d- antiferromagnetic (AFM) ordering below 139 K and 4f-AFM ordering below 4 K. On the other hand, the phosphide CeFePO is a ferromagnetically corelated heavy-fermion (HF) metal with Kondo scale TK 10 K. These properties set up a new platform for research of the interplay among magnetism, Kondo effect, and superconductivity (SC). In this review, we present the recent progress in the study of chemical pressure effect in CeFeAsOl_yFy (y = 0 and 0.05). This P/As-doping in CeFeAsO serves as an effective controlling parameter which leads to two magnetic critical points, Xcl -- 0.4 and Xc2 - 0.92, associated with suppression of 3d and 4f magnetism, respectively. We also observe a turning point of AFM-FM ordering of Ce3+ moment at Xc3 - 0.37. The SC is absent in the phase diagram, which is attributed to the destruction to Cooper pair by Ce-FM fluctuations in the vicinity of Xcl. We continue to investigate CeFeAsl-xPxO0.95Fo.os. With the separation of xcl and xc3, this chemical pressure results in a broad SC region 0〈 x 〈 0.53, while the original HF behavior is driven away by 5% F- doping. Different roles of P and F dopings are addressed, and the interplay between SC and Ce-4f magnetism is also discussed.