As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging spee...As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging speed,long cycle life,and so forth.One of the key factors affecting the performance of supercapacitor is the electrode material.Carbon materials,such as carbon nanotube,graphene,activated carbon,and carbon nanocage,are most widely concerned in the application of supercapacitors.The synergistic effect of composites can often obtain excellent results,which is one of the common strategies to increase the electrochemical performance of supercapacitors.To further improve the performance of binary composites,it is a relatively simple method to increase the components as the“bridge”between the two materials to form the ternary composites.The review mainly introduces the current research progress of supercapacitors with pure carbon nanomaterials and multistage carbon nanostructures(composites)as electrodes.The characteristics and application directions of different pure carbon nanomaterials are introduced in detail.Different ways of multilevel structure(material)composite have their own effects on the development of high-performance supercapacitors.We also highlight the recent advances related to these fields and provide our insight into high-energy supercapacitors.展开更多
Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptabilit...Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.展开更多
The properties of the composite nanomaterials (CNM) based on bovine serum albumin (BSA) and multi-walled carbon nanotubes (MWCNT), both functionalized and non-functionalized, were investigated. In order to obtain the ...The properties of the composite nanomaterials (CNM) based on bovine serum albumin (BSA) and multi-walled carbon nanotubes (MWCNT), both functionalized and non-functionalized, were investigated. In order to obtain the solid-state bulk CNM from the ultradispersed aqueous solutions of 25 wt.% BSA and (0.0015 - 0.04) wt.% MWCNT, the methods of nanotechnology and laser technology were used. It is revealed that the CNM density is 10% - 20% higher than that of water and the hardness is higher than that of BSA by a factor of 3 - 6 times. An increase in hardness Hv (by Vickers) of CNM correlated with an increase in the concentration of MWCNT, and Hyreached ~300 MPa for the case of the non-functionalized MWCNT, while for the case of the functionalized MWCNT, i.e. MWCNTf, Hy was 25% lower.展开更多
Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-...Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.展开更多
Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterb...Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterborne polyurethane(WPU)andβ-cyclodextrin(β-CD)have not been reported.Herein,a novel green method,ion condensation method,was developed in this study for the preparation of polymer nanosponge adsorbents for efficient removal of dyes from wastewater.Based on the principle of charge repulsion between nanoparticles to maintain emulsion stability,waterborne polyurethane/β-cyclodextrin composite nanosponges(WPU-x,y)were prepared by coagulating the emulsions synthesized from 2,2-dimethylolpropionic acid,polypropylene glycol and hexamethylene diisocyanate as raw materials in a mixture of hydrochloric acid and anhydrous ethanol.The structure and appearance of WPU-x,y were characterized by attenuated total reflectance Fourier transform infrared spectroscopy,thermal gravimetric analyzer,scanning electron microscope and mercury intrusion porosimetry.The adsorption capacity of WPU-x,y was tested by parameters such as cross-linking degree,β-CD dosage,contact time,initial dye concentration and p H value.The study found that WPU-4,4.62 had the best adsorption effect on methylene blue(MB),the maximum removal rate was 93.42%,and the maximum adsorption capacity was 136.03 mg·g^(-1).Moreover,the Sips isotherm and pseudo-second-order-model were suitable for MB adsorption.Therefore,this study provides some perspectives for the fabrication of nanosponge adsorbents.展开更多
In this research,polyamide modified baghouse dust nanocomposite(PMBHD)was synthesized from steel industry waste using the interfacial polymerization technique.Adsorption capacities of the PMBHD were examined for the u...In this research,polyamide modified baghouse dust nanocomposite(PMBHD)was synthesized from steel industry waste using the interfacial polymerization technique.Adsorption capacities of the PMBHD were examined for the uptake of cadmium Cd(Ⅱ),lead Pb(Ⅱ),and methylene blue MB from simulated solutions.The effects of different operational factors of the adsorption,including contact time,pH,adsorbent dosage,initial concentration,and temperature,were investigated.The obtained results revealed that the equilibrium data of MB,Pb(Ⅱ),and Cd(Ⅱ)were best fitted to Dubinin-Radushkevich,Langmuir,and Freundlich isotherm.Maximum removal uptake was found to be 6.08,119,and 234 mg·g^(-1),whereas maximum removal efficiencies of 90%,99.8%,and 98%were achieved for MB,Pb(Ⅱ),and Cd(Ⅱ).Adsorption kinetics of MB and metals well-fitted to the pseudo-second-order kinetic.The characterization results showed the presence of polymeric chain on the surface of the PMBHD.The thermodynamic study revealed that the values of the free energy DG for Pb(Ⅱ)and Cd(Ⅱ)were found to be negative,which indicates spontaneous,energetic,and favorable adsorption.While for MB removal,positive values of(DG)were noticed,which implies that the adsorption was unfavorable.The proposed mechanism for the adsorption of MB and metals on the PMBHD showed that the dominating mechanism is physisorption.The adsorption/desorption results verified the high reusability of the PMBHD for adsorption of MB and metals.展开更多
This paper considers the technique of obtaining boride-containing nanostructured composite materials by the method of self-propagating high-temperature synthesis (SHS). It is shown that the selection of regimes and co...This paper considers the technique of obtaining boride-containing nanostructured composite materials by the method of self-propagating high-temperature synthesis (SHS). It is shown that the selection of regimes and conditions of reactions allows receiving materials on the basis of titanium and chromium borides as well as aluminum oxide with finely dispersed structure and high mechanical properties.展开更多
Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,huma...Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.展开更多
The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive p...The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.展开更多
The quest for high-performance construction materials is led by the development and application of new reinforcement materials for cement composites.Concrete reinforcement with fibers has a long history.Nowadays,many ...The quest for high-performance construction materials is led by the development and application of new reinforcement materials for cement composites.Concrete reinforcement with fibers has a long history.Nowadays,many new fibers associated with high performance and possessing eco-environmental characteristics,such as basalt fibers and plant fibers,have received much attention from researchers.In addition,nanomaterials are considered as a core material in the modification of cement composites,specifically in the enhancement of the strength and durability of composites.This paper provides an overview of the recent research progress on cement composites reinforced with fibers and nanomaterials.The influences of fibers and nanomaterials on the fresh and hardened properties of cement composites are summarized.Moreover,future trends in the application of these fibers or of nanomaterial-reinforced cement composites are proposed.展开更多
The high fire safety of polymer nanocomposites is being pursued by research institutions around the world.In addition to intrinsic flame retardancy strategy,the additive-type flame retardants have attracted increasing...The high fire safety of polymer nanocomposites is being pursued by research institutions around the world.In addition to intrinsic flame retardancy strategy,the additive-type flame retardants have attracted increasing attention due to low commercial cost and easy fabrication craft.However,traditional additive-type flame retardants usually need high addition amount to achieve a desirable effect which causes many side-effects on the overall performance of polymer materials,such as deteriorated mechanical property and processability.At present two-dimensional(2D)nanomaterials have also been applied to reduce the fire hazards of polymer(nano)composites with the coupling of barrier function and catalysis as well as carbonization effect.Even though most research work mainly focus on graphene-based flame retardants,more emerging two-dimensional nanomaterials are taking away research attention,due to their complementary and unique properties,mainly including hexagonal boron nitride(h-BN),molybdenum disulfide(MoS2),metal organic frameworks(MOF),carbon nitride(CN),titanium carbide(MXene)and black phosphorene(BP).In this review,except for graphene,the flame retardant mechanism involving different layered nanomaterials are also reviewed.Meanwhile,the functionalization method and flame retardancy effect of different layered nanomaterials are emphatically discussed for offering an effective reference to solve the fire hazards of polymer materials.Moreover,this work objectively evaluates the practical significance of polymer/layered nanomaterials composites for industrial application.展开更多
Composite filler metal refers to the traditional filler metal by adding a certain proportion of various forms of superalloy,carbon fiber and ceramic particles as reinforcement phase.Due to the addition of the reinforc...Composite filler metal refers to the traditional filler metal by adding a certain proportion of various forms of superalloy,carbon fiber and ceramic particles as reinforcement phase.Due to the addition of the reinforcement phase,the filler metal can have a suitable thermal expansion coefficient,which can effectively reduce the residual stress at the brazing joint caused by the different thermal expansion coefficients of the base metal and improve the comprehensive performance of the brazing joint.In recent years,with the progress of science and technology,the research on nanomaterials has been deepening,and nanomaterials are widely used in the modification of composite filler metals because of their special surface effect,small size effect,quantum size effect and macroscopic quantum tunneling effect.The modification performance of different composite solders by nanoparticles in recent years is reviewed,the advantages and disadvantages of nano-reinforced composite solders are analyzed,and the future research direction of composite solders is prospected.展开更多
High-k polymer composite materials are next-generation dielectrics that show amazing applications in diverse electrical and electronic devices. Establishing near-percolated network of conducting filler in an insulatin...High-k polymer composite materials are next-generation dielectrics that show amazing applications in diverse electrical and electronic devices. Establishing near-percolated network of conducting filler in an insulating polymer matrix is a promising approach to develop flexible high-k dielectrics. However, challenges still exist today on fine controlling the network morphology to achieve extremely high k values and low losses simultaneously. The relationship between the network morphology and the dielectric properties of polymer composites is raising a number of fundamental questions. Herein, recent progress towards high-k polymer composites based on carbon nanomaterials is reviewed. Particular attention is paid on the influence of the network morphology on the dielectric properties. Some perspectives that warrant further investigation in the future are also addressed.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52102050Science&Technology Development Fund of Tianjin Education Commission for Higher Education,Grant/Award Number:2019KJ092。
文摘As a type of energy storage device between traditional capacitors and batteries,the supercapacitor has the advantages of energy saving and environmental protection,high power density,fast charging and discharging speed,long cycle life,and so forth.One of the key factors affecting the performance of supercapacitor is the electrode material.Carbon materials,such as carbon nanotube,graphene,activated carbon,and carbon nanocage,are most widely concerned in the application of supercapacitors.The synergistic effect of composites can often obtain excellent results,which is one of the common strategies to increase the electrochemical performance of supercapacitors.To further improve the performance of binary composites,it is a relatively simple method to increase the components as the“bridge”between the two materials to form the ternary composites.The review mainly introduces the current research progress of supercapacitors with pure carbon nanomaterials and multistage carbon nanostructures(composites)as electrodes.The characteristics and application directions of different pure carbon nanomaterials are introduced in detail.Different ways of multilevel structure(material)composite have their own effects on the development of high-performance supercapacitors.We also highlight the recent advances related to these fields and provide our insight into high-energy supercapacitors.
文摘Naturalfibre(NFR)reinforced functional polymer composites are quickly becoming an indispensable sustainable material in the transportation industry because of their lightweight,lower cost in manufacture,and adaptability to a wide variety of goods.However,the major difficulties of using thesefibres are their existing poor dimensional stability and the extreme hydrophilicity.In assessing the mechanical properties(MP)of composites,the interfacial bonding(IB)happening between the NFR and the polymer matrix(PM)plays an incredibly significant role.When compared to NFR/syntheticfibre hybrid composites,hybrid composites(HC)made up of two separate NFR are less prevalent;yet,these hybrid composites also have the potential to be valuable materials in terms of environmental issues.A new dimension to theflexibility of composites reinforced with NFR is added by the cost-effective manufacture of hybrid composites utilising NFR.The purpose of this study is to offer an over-view of the keyfindings that were presented on hybrid composites.The emphasis was focused on the factors that influence the performance of the naturalfiber composites,diverse approaches to enhancing MP,physical,electri-cal,and thermal characteristics of the HC.HC study in polymer science gains interest for applications in con-struction and automotive industries.
文摘The properties of the composite nanomaterials (CNM) based on bovine serum albumin (BSA) and multi-walled carbon nanotubes (MWCNT), both functionalized and non-functionalized, were investigated. In order to obtain the solid-state bulk CNM from the ultradispersed aqueous solutions of 25 wt.% BSA and (0.0015 - 0.04) wt.% MWCNT, the methods of nanotechnology and laser technology were used. It is revealed that the CNM density is 10% - 20% higher than that of water and the hardness is higher than that of BSA by a factor of 3 - 6 times. An increase in hardness Hv (by Vickers) of CNM correlated with an increase in the concentration of MWCNT, and Hyreached ~300 MPa for the case of the non-functionalized MWCNT, while for the case of the functionalized MWCNT, i.e. MWCNTf, Hy was 25% lower.
基金Project (2003AA305820) supported by the National High-Tech Research and Development Program of ChinaProject(2006) supported by the Postdoctoral Foundation of Central South University, China
文摘Cu-Cr-O nanocomposites that can be used as additives for the catalytic combustion of AP(ammonium perchlorate)-based solid-state propellants were synthesized via a citric acid(CA) complexing approach. Techniques of TG-DTA, XRD as well as TEM were employed to characterize the thermal decomposition procedure, crystal phase, micro-structural morphologies and grain size of the as-synthesized materials respectively. The results show that well-crystallized Cu-Cr-O nanocomposites can be produced after the CA-Cu-Cr precursors are calcined at 500 ℃ for 3 h. Phase composition of the as-obtained Cu-Cr-O nanocomposites depends on the molar ratio of Cu to Cr in the starting reactants. Addition of the as-synthesized Cu-Cr-O nanocomposites as catalysts enhances the burning rate as well as lowers the pressure exponent of the AP-based solid-state propellants considerably. Noticeably, catalyst with a CuCr molar ratio of 0.7 exhibits promising catalytic activity with high burning rate and low pressure exponent at all pressures, due to the effective phase interaction between the spinel CuCr2O4 and delafossite CuCrO2 contained in the as-synthesized Cu-Cr-O nanocomposites.
基金supported by the National Natural Science Foundation of China(21704047,21801145)the Natural Science Foundation of Shandong Province(ZR2017BB078,ZR2021QE137)+1 种基金the Foundation(ZZ20190407)of State Key Laboratory of Biobased Material and Green Papermakingthe Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020230)。
文摘Currently,polymer nanosponges have received extensive attention.However,developing new synthetic techniques for novel nanosponges remains a challenge.Furthermore,to date,composite nanosponge adsorbents based on waterborne polyurethane(WPU)andβ-cyclodextrin(β-CD)have not been reported.Herein,a novel green method,ion condensation method,was developed in this study for the preparation of polymer nanosponge adsorbents for efficient removal of dyes from wastewater.Based on the principle of charge repulsion between nanoparticles to maintain emulsion stability,waterborne polyurethane/β-cyclodextrin composite nanosponges(WPU-x,y)were prepared by coagulating the emulsions synthesized from 2,2-dimethylolpropionic acid,polypropylene glycol and hexamethylene diisocyanate as raw materials in a mixture of hydrochloric acid and anhydrous ethanol.The structure and appearance of WPU-x,y were characterized by attenuated total reflectance Fourier transform infrared spectroscopy,thermal gravimetric analyzer,scanning electron microscope and mercury intrusion porosimetry.The adsorption capacity of WPU-x,y was tested by parameters such as cross-linking degree,β-CD dosage,contact time,initial dye concentration and p H value.The study found that WPU-4,4.62 had the best adsorption effect on methylene blue(MB),the maximum removal rate was 93.42%,and the maximum adsorption capacity was 136.03 mg·g^(-1).Moreover,the Sips isotherm and pseudo-second-order-model were suitable for MB adsorption.Therefore,this study provides some perspectives for the fabrication of nanosponge adsorbents.
文摘In this research,polyamide modified baghouse dust nanocomposite(PMBHD)was synthesized from steel industry waste using the interfacial polymerization technique.Adsorption capacities of the PMBHD were examined for the uptake of cadmium Cd(Ⅱ),lead Pb(Ⅱ),and methylene blue MB from simulated solutions.The effects of different operational factors of the adsorption,including contact time,pH,adsorbent dosage,initial concentration,and temperature,were investigated.The obtained results revealed that the equilibrium data of MB,Pb(Ⅱ),and Cd(Ⅱ)were best fitted to Dubinin-Radushkevich,Langmuir,and Freundlich isotherm.Maximum removal uptake was found to be 6.08,119,and 234 mg·g^(-1),whereas maximum removal efficiencies of 90%,99.8%,and 98%were achieved for MB,Pb(Ⅱ),and Cd(Ⅱ).Adsorption kinetics of MB and metals well-fitted to the pseudo-second-order kinetic.The characterization results showed the presence of polymeric chain on the surface of the PMBHD.The thermodynamic study revealed that the values of the free energy DG for Pb(Ⅱ)and Cd(Ⅱ)were found to be negative,which indicates spontaneous,energetic,and favorable adsorption.While for MB removal,positive values of(DG)were noticed,which implies that the adsorption was unfavorable.The proposed mechanism for the adsorption of MB and metals on the PMBHD showed that the dominating mechanism is physisorption.The adsorption/desorption results verified the high reusability of the PMBHD for adsorption of MB and metals.
文摘This paper considers the technique of obtaining boride-containing nanostructured composite materials by the method of self-propagating high-temperature synthesis (SHS). It is shown that the selection of regimes and conditions of reactions allows receiving materials on the basis of titanium and chromium borides as well as aluminum oxide with finely dispersed structure and high mechanical properties.
基金financially supported by National Natural Science Foundation of China(Grant No.52073071,51803041)Natural Science Funding for Excellent Young Scholar of Heilongjiang Province(YQ2022E021,L.Wang)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.DZJJ.2023056)the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute(No.JS220407)the financial support from the Spanish Ministry of Economy and the Canary Islands program Vieray Clavijo Senior(Ref.2023/00001156)。
文摘Marine biofouling seriously affects human marine exploitation and transportation activities,to which marine antifouling(AF)coatings are considered to be the most cost-effective solution.Since the mid-20th century,human beings have dedicated their efforts on developing AF coatings with long cycle and high performance,leading to a large number of non-target organisms?distortion,death and marine environmental pollution.Polydimethylsiloxane(PDMS),is considered as one of the representative environment-friendly AF materials thanks to its non-toxic,hydrophobic,low surface energy and AF properties.However,PDMS AF coatings are prone to mechanical damage,weak adhesion strength to substrate,and poor static AF effect,which seriously restrict their use in the ocean.The rapid development of various nanomaterials provides an opportunity to enhance and improve the mechanical properties and antifouling properties of PDMS coating by embedding nanomaterials.Based on our research background and the problems faced in our laboratory,this article presents an overview of the current progress in the fields of PDMS composite coatings enhanced by different nanomaterials,with the discussion focused on the advantages and main bottlenecks currently encountered in this field.Finally,we propose an outlook,hoping to provide fundamental guidance for the development of marine AF field.
文摘The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials.
基金Financial support from the National Science Fund for Distinguished Young Scholars of China(Nos.51325802 and 11625210)is highly acknowledged.The authors declare that there are no conflicts of interest.
文摘The quest for high-performance construction materials is led by the development and application of new reinforcement materials for cement composites.Concrete reinforcement with fibers has a long history.Nowadays,many new fibers associated with high performance and possessing eco-environmental characteristics,such as basalt fibers and plant fibers,have received much attention from researchers.In addition,nanomaterials are considered as a core material in the modification of cement composites,specifically in the enhancement of the strength and durability of composites.This paper provides an overview of the recent research progress on cement composites reinforced with fibers and nanomaterials.The influences of fibers and nanomaterials on the fresh and hardened properties of cement composites are summarized.Moreover,future trends in the application of these fibers or of nanomaterial-reinforced cement composites are proposed.
基金the National Natural Science Foundation of China(Nos.51761135113,51911530127 and 51973203)the Fundamental Research Funds for the Central Universities(No.WK2320000043).
文摘The high fire safety of polymer nanocomposites is being pursued by research institutions around the world.In addition to intrinsic flame retardancy strategy,the additive-type flame retardants have attracted increasing attention due to low commercial cost and easy fabrication craft.However,traditional additive-type flame retardants usually need high addition amount to achieve a desirable effect which causes many side-effects on the overall performance of polymer materials,such as deteriorated mechanical property and processability.At present two-dimensional(2D)nanomaterials have also been applied to reduce the fire hazards of polymer(nano)composites with the coupling of barrier function and catalysis as well as carbonization effect.Even though most research work mainly focus on graphene-based flame retardants,more emerging two-dimensional nanomaterials are taking away research attention,due to their complementary and unique properties,mainly including hexagonal boron nitride(h-BN),molybdenum disulfide(MoS2),metal organic frameworks(MOF),carbon nitride(CN),titanium carbide(MXene)and black phosphorene(BP).In this review,except for graphene,the flame retardant mechanism involving different layered nanomaterials are also reviewed.Meanwhile,the functionalization method and flame retardancy effect of different layered nanomaterials are emphatically discussed for offering an effective reference to solve the fire hazards of polymer materials.Moreover,this work objectively evaluates the practical significance of polymer/layered nanomaterials composites for industrial application.
基金financially supported by the National Key Research and Development Program of China(2021YFB3401101).
文摘Composite filler metal refers to the traditional filler metal by adding a certain proportion of various forms of superalloy,carbon fiber and ceramic particles as reinforcement phase.Due to the addition of the reinforcement phase,the filler metal can have a suitable thermal expansion coefficient,which can effectively reduce the residual stress at the brazing joint caused by the different thermal expansion coefficients of the base metal and improve the comprehensive performance of the brazing joint.In recent years,with the progress of science and technology,the research on nanomaterials has been deepening,and nanomaterials are widely used in the modification of composite filler metals because of their special surface effect,small size effect,quantum size effect and macroscopic quantum tunneling effect.The modification performance of different composite solders by nanoparticles in recent years is reviewed,the advantages and disadvantages of nano-reinforced composite solders are analyzed,and the future research direction of composite solders is prospected.
基金supported by project ELENA,funded by France ANR and Solvay, and of the Labex AMADEus (No. ANR-10-LABX-0042-AMADEus)
文摘High-k polymer composite materials are next-generation dielectrics that show amazing applications in diverse electrical and electronic devices. Establishing near-percolated network of conducting filler in an insulating polymer matrix is a promising approach to develop flexible high-k dielectrics. However, challenges still exist today on fine controlling the network morphology to achieve extremely high k values and low losses simultaneously. The relationship between the network morphology and the dielectric properties of polymer composites is raising a number of fundamental questions. Herein, recent progress towards high-k polymer composites based on carbon nanomaterials is reviewed. Particular attention is paid on the influence of the network morphology on the dielectric properties. Some perspectives that warrant further investigation in the future are also addressed.