The latest discovery of a new iron-chalcogenide superconductor AXFe2-ySe2 (A =K, Cs, Rb, and Tl, etc.) has attracted much attention due to a number of its unique characteristics, such as the possible insulating stat...The latest discovery of a new iron-chalcogenide superconductor AXFe2-ySe2 (A =K, Cs, Rb, and Tl, etc.) has attracted much attention due to a number of its unique characteristics, such as the possible insulating state of the parent compound, the existence of Fe-vacancy and its ordering, a new form of magnetic structure and its interplay with superconductivity, and the peculiar electronic structures that are distinct from other Fe-based superconductors. In this paper, we present a brief review on the structural, magnetic and electronic properties of this new superconductor, with an emphasis on the electronic structure and superconducting gap. Issues and future perspectives are discussed at the end of the paper.展开更多
FeTe, a non-superconducting parent compound in the iron-chalcogenide family, becomes superconducting after annealing in oxygen. Under the presence of magnetism, spin-orbit coupling, inhomogeneity and lattice distortio...FeTe, a non-superconducting parent compound in the iron-chalcogenide family, becomes superconducting after annealing in oxygen. Under the presence of magnetism, spin-orbit coupling, inhomogeneity and lattice distortion,the nature of its superconductivity is not well understood. Here we combine the mutual inductance technique with magneto transport to study the magnetization and superconductivity of FeTe thin films. It is found that the films with the highest TC show non-saturating superfluid density and a strong magnetic hysteresis distinct from that in a homogeneous superconductor. Such a hysteresis can be well explained by a two-level critical state model and suggests the importance of granularity to superconductivity in this compound.展开更多
The iron-chalcogenide high temperature superconductor Fe(Se,Te)(FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the ...The iron-chalcogenide high temperature superconductor Fe(Se,Te)(FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST. We found that in FST with 10% interstitial Fe,whose magnetic structure was heavily disrupted, bulk superconductivity was significantly suppressed whereas edge still preserved strong superconducting diamagnetism. The edge dominantly carried supercurrent despite of a very long magnetic penetration depth. The temperature dependences of the superfluid density and supercurrent distribution were distinctively different between the edge and the bulk.Our Heisenberg modeling showed that magnetic dopants stabilize anti-ferromagnetic spin correlation along the edge, which may contribute towards its robust superconductivity. Our observations hold implication for FST as potential platforms for topological quantum computation and superconducting spintronics.展开更多
基金Acknowledgements We would like to thank the collaborations with Shanyu Liu, Xiaowen Jia, Junfeng He, Yingying Peng, Li Yu, Xu Liu, Guodong Liu, Shaolong He, Xiaoli Dong, Jun Zhang, Hangdong Wang, Chiheng Dong, Minghu Fang, J. B. He, D. M. Wang, G. F. Chert, J. G. Guo, X. L. Chen, Xiaoyang Wang, Qinjun Peng, Zhimin Wang, Shenjin Zhang, Feng Yang, Zuyan Xu, and Chuangtian Chen. This work was financially supported by the National Natural Science Foundation of China (Grant No. 10734120) and the State Key Development Program for Basic Research of China (973 program, Grant No. 2011CB921703).
文摘The latest discovery of a new iron-chalcogenide superconductor AXFe2-ySe2 (A =K, Cs, Rb, and Tl, etc.) has attracted much attention due to a number of its unique characteristics, such as the possible insulating state of the parent compound, the existence of Fe-vacancy and its ordering, a new form of magnetic structure and its interplay with superconductivity, and the peculiar electronic structures that are distinct from other Fe-based superconductors. In this paper, we present a brief review on the structural, magnetic and electronic properties of this new superconductor, with an emphasis on the electronic structure and superconducting gap. Issues and future perspectives are discussed at the end of the paper.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301002 and 2017YFA0303000the National Natural Science Foundation of China under Grant No 11827805
文摘FeTe, a non-superconducting parent compound in the iron-chalcogenide family, becomes superconducting after annealing in oxygen. Under the presence of magnetism, spin-orbit coupling, inhomogeneity and lattice distortion,the nature of its superconductivity is not well understood. Here we combine the mutual inductance technique with magneto transport to study the magnetization and superconductivity of FeTe thin films. It is found that the films with the highest TC show non-saturating superfluid density and a strong magnetic hysteresis distinct from that in a homogeneous superconductor. Such a hysteresis can be well explained by a two-level critical state model and suggests the importance of granularity to superconductivity in this compound.
基金Yihua Wang would like to acknowledge partial support by the Ministry of Science and Technology of China(2016YFA0301002 and 2017YFA0303000)the National Natural Science Foundation of China(11827805)+4 种基金Shanghai Municipal Science and Technology Major Project Da Jiang would like to acknowledge partial support by the‘‘Strategic Priority Research Program(B)”of the Chinese Academy of Sciences(XDB04040300)the National Natural Science Foundation of China(11274333)Hundred Talents Program of the Chinese Academy of Sciences.Shaoyu Yin would like to acknowledge support by the National Natural Science Foundation of China(11704072)Work at Stanford was supported by an NSF IMR-MIP(DMR-0957616)part of the National Nanotechnology Coordinated Infrastructure under award ECCS-1542152.
文摘The iron-chalcogenide high temperature superconductor Fe(Se,Te)(FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST. We found that in FST with 10% interstitial Fe,whose magnetic structure was heavily disrupted, bulk superconductivity was significantly suppressed whereas edge still preserved strong superconducting diamagnetism. The edge dominantly carried supercurrent despite of a very long magnetic penetration depth. The temperature dependences of the superfluid density and supercurrent distribution were distinctively different between the edge and the bulk.Our Heisenberg modeling showed that magnetic dopants stabilize anti-ferromagnetic spin correlation along the edge, which may contribute towards its robust superconductivity. Our observations hold implication for FST as potential platforms for topological quantum computation and superconducting spintronics.