Kr1基因是小麦远缘杂交不亲和的主效基因。为探究Kr1基因的特性,根据已公布的Kr1基因c DNA部分序列,采用染色体步移(Genome Walking)和c DNA末端快速扩增技术(rapid amplification of c DNA ends,RACE)克隆小麦显性Kr1基因和隐性kr1基因...Kr1基因是小麦远缘杂交不亲和的主效基因。为探究Kr1基因的特性,根据已公布的Kr1基因c DNA部分序列,采用染色体步移(Genome Walking)和c DNA末端快速扩增技术(rapid amplification of c DNA ends,RACE)克隆小麦显性Kr1基因和隐性kr1基因,并进行序列分析。结果表明,小麦Kr1基因全长4 006 bp,含有4个外显子和3个内含子,ORF全长1 671 bp,编码557个氨基酸,可形成一条完整肽链,有基因活性,Kr1蛋白三级结构与植物S位点受体激酶具有较高的相似性。kr1基因全长3 945bp,第3、第4外显子中因含有大量终止密码子,不能通读,表明kr1基因无基因活性。同时对小麦×黑麦、小麦×球茎大麦、小麦×玉米等不同远缘杂交系统的亲和性差异进行探讨,认为Kr1基因在小麦×玉米中失活可能与玉米转座子的插入有关。本研究结果为进一步阐明Kr1基因的功能及其作用机制奠定了基础。展开更多
We studied the cross-compatibility among 91 inter-specific combinations and 21 inter-generic combinations in 7 Eriobotrya plants and 2 related genera(Raphiolepis indica Lindl. and Photinia serrulata Lindl.) using emas...We studied the cross-compatibility among 91 inter-specific combinations and 21 inter-generic combinations in 7 Eriobotrya plants and 2 related genera(Raphiolepis indica Lindl. and Photinia serrulata Lindl.) using emasculation, bagging, and artificial pollination. Our results showed that28 of the 91 inter-specific combinations set no fruit, which means nearly 30% of the combinations were incompatible. In the remaining 63 combinations, most showed partial cross-compatibility, and a few showed complete cross compatibility. Eriobotrya plants were incompatible with plants from their related genera(R. indica Lindl. and P. serrulata Lindl.). Backcrossing produced 5 compatible combinations, which could set fruits and produce F1 progeny but only after embryo rescue. Fruit setting ratios varied among various species used as male or female parents.E. prinoides Rehd. & Wils., common loquat(E. japonica) and Eriobotrya × daduheensis, used as female parents resulted in an average fruitsetting ratio of 36.2%–58.2%. E. deflexa Nakai and its two forms, and E. elliptica Lindl. as female parents resulted in 2.9%–16.3% average fruitsetting ratio; however, the fruit set ratio was higher(22.4%–43.1%) if they were used as male parents. Failure of E. deflexa f. koshunensis Nakai × E.prinoides Rehd. & Wils. hybrids to set fruit could be attributed to sporophytic incompatibility.展开更多
文摘Kr1基因是小麦远缘杂交不亲和的主效基因。为探究Kr1基因的特性,根据已公布的Kr1基因c DNA部分序列,采用染色体步移(Genome Walking)和c DNA末端快速扩增技术(rapid amplification of c DNA ends,RACE)克隆小麦显性Kr1基因和隐性kr1基因,并进行序列分析。结果表明,小麦Kr1基因全长4 006 bp,含有4个外显子和3个内含子,ORF全长1 671 bp,编码557个氨基酸,可形成一条完整肽链,有基因活性,Kr1蛋白三级结构与植物S位点受体激酶具有较高的相似性。kr1基因全长3 945bp,第3、第4外显子中因含有大量终止密码子,不能通读,表明kr1基因无基因活性。同时对小麦×黑麦、小麦×球茎大麦、小麦×玉米等不同远缘杂交系统的亲和性差异进行探讨,认为Kr1基因在小麦×玉米中失活可能与玉米转座子的插入有关。本研究结果为进一步阐明Kr1基因的功能及其作用机制奠定了基础。
基金supported by Guangdong Science and Technology Basic Condition Construction Project (Grant No. 2015A030303015)Guangzhou Science and Technology Innovation Commission (Grant No. 201504010028)
文摘We studied the cross-compatibility among 91 inter-specific combinations and 21 inter-generic combinations in 7 Eriobotrya plants and 2 related genera(Raphiolepis indica Lindl. and Photinia serrulata Lindl.) using emasculation, bagging, and artificial pollination. Our results showed that28 of the 91 inter-specific combinations set no fruit, which means nearly 30% of the combinations were incompatible. In the remaining 63 combinations, most showed partial cross-compatibility, and a few showed complete cross compatibility. Eriobotrya plants were incompatible with plants from their related genera(R. indica Lindl. and P. serrulata Lindl.). Backcrossing produced 5 compatible combinations, which could set fruits and produce F1 progeny but only after embryo rescue. Fruit setting ratios varied among various species used as male or female parents.E. prinoides Rehd. & Wils., common loquat(E. japonica) and Eriobotrya × daduheensis, used as female parents resulted in an average fruitsetting ratio of 36.2%–58.2%. E. deflexa Nakai and its two forms, and E. elliptica Lindl. as female parents resulted in 2.9%–16.3% average fruitsetting ratio; however, the fruit set ratio was higher(22.4%–43.1%) if they were used as male parents. Failure of E. deflexa f. koshunensis Nakai × E.prinoides Rehd. & Wils. hybrids to set fruit could be attributed to sporophytic incompatibility.