[Objective] The research aimed to isolate the glyphosate-degraded strain and study its degradation characteristics.[Method] A glyphosate-degraded fungal strain A-F02 was isolated from sludge in an aeration tank of a g...[Objective] The research aimed to isolate the glyphosate-degraded strain and study its degradation characteristics.[Method] A glyphosate-degraded fungal strain A-F02 was isolated from sludge in an aeration tank of a glyphosate manufacture.The fungal strain A-F02 was identified according to morphological characteristics and internal transcribed spacer(ITS)region of nuclear ribosomal DNA sequence analysis.The glyphosate-biodegraded characteristics of strain A-F02 and the influencing factors were studied.[Result] The fungal strain A-F02 was identified as Aspergillus oryzae sp..The glyphosate-biodegraded rate was 86.82% in the mineral salt medium with 1 000 mg/L of glyphosate as the sole source of carbon,after being incubated at 30 ℃ and 150 rpm for 7 d.The biodegradation rates and biomass of the A-F02 were the highest under the culture conditions with glucose(0.5%,w/v),pH 7.5,30 ℃ and glyphosate(1 500 mg/L).[Conclusion] The research provided the experimental basis for glyphosate-biodegraded enzyme purification.展开更多
We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid...We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.展开更多
文摘[Objective] The research aimed to isolate the glyphosate-degraded strain and study its degradation characteristics.[Method] A glyphosate-degraded fungal strain A-F02 was isolated from sludge in an aeration tank of a glyphosate manufacture.The fungal strain A-F02 was identified according to morphological characteristics and internal transcribed spacer(ITS)region of nuclear ribosomal DNA sequence analysis.The glyphosate-biodegraded characteristics of strain A-F02 and the influencing factors were studied.[Result] The fungal strain A-F02 was identified as Aspergillus oryzae sp..The glyphosate-biodegraded rate was 86.82% in the mineral salt medium with 1 000 mg/L of glyphosate as the sole source of carbon,after being incubated at 30 ℃ and 150 rpm for 7 d.The biodegradation rates and biomass of the A-F02 were the highest under the culture conditions with glucose(0.5%,w/v),pH 7.5,30 ℃ and glyphosate(1 500 mg/L).[Conclusion] The research provided the experimental basis for glyphosate-biodegraded enzyme purification.
文摘We describes a controllable synthesis procedure for growing a-Ee2O3 and Ee3O4 nanowires. High magnetic hematite a-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of a-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.