期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Vascular endothelial growth factor induced angiogenesis following focal cerebral ischemia/reperfusion injury in rabbits 被引量:2
1
作者 Huaijun Liu Jiping Yang Fenghai Liu Qiang Zhang Hui Li 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期297-300,共4页
BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on in... BACKGROUND: Therapeutic angiogenesis has opened up new pathway for the treatment of ischemic cerebrovascular disease in recent years. The exploration of the effect of vascular endothelial growth factor (VEGF) on inducing angiogenesis following ischemia/reperfusion injury can provide better help for the long-term treatment of cerebrovascular disease in clinic. OBJECTIVE: To observe the effect of VEGF on inducing angiogenesis following focal cerebral ischemia /reperfusion injury in rabbits through the angiogenesis of microvessels reflected by the expression of the factors of vascular pseudohemophilia. DESIGN: A randomized controlled animal tria SETTNG: Department of Medical Imaging, Second Hospital of Hebei Medical University MATERIALS: Sixty-five healthy male New Zealand rabbits of clean degree, weighing (2.6±0.2) kg, aged 4.5-5 months, were used. The polyclonal antibody against vascular pseudohemophilia (Beijing Zhongshan Company), recombinant VEGF165 (Peprotech Company, USA), biotinylated second antibody and ABC compound (Wuhan Boster Company) were applied. METHODS: The experiments were carried out in the Laboratory of Neuromolecular Imaging and Neuropathy, Second Hospital of Hebei Medical University from May to August in 2005. (1) The rabbits were randomly divided into three groups: sham-operated group (n=15), control group (n=25) and VEGF-treated group (n=-25). In the control group and VEGF-treated group, models were established by middle cerebral artery occlusion (MCAO) induced focal cerebral ischemia/reperfusion. In the VEGF-treated group, VEGF165 (2.5 mg/L) was stereotactically injected into the surrounding regions of the infarcted sites immediately after the 2-hour ischemia/reperfusion; Saline of the same dosage was injected in the control group. But the rabbits in the sham-operated group were only drilled but not administrated. (2) The experimental indexes were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment respectively, 3 rabbits in the sham-operated group and 5 in the control group and VEGF-treated group were observed at each time point. The brain tissues in the surrounding regions of the infarcted sites were collected. The positive expressions of the factors of vascular pseudohemophilia in vascular endothelial cells were analyzed with immunohistochemical method. The microvessels in unit statistical field were counted with the imaging analytical software. MAIN OUTCOME MEASURES: The changes of microvascular density in the brain tissue and the positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of the infarcted sites were observed on the 3^rd 7^th, 14^th, 28^th and 70^th days of the experiment. RESULTS: All the 65 New Zealand rabbits were involved in the analysis of results without deletion. Changes of the number of microvessels at different time points in each group: There were no obvious changes at different time points in the sham-operated group. The numbers of microvessels at 7 and 14 days were obviously more in the control group than in the sham-operated group [(6.0±1.1), (9.0±0.9) microvessels; (3.0±1.1), (3.0±1.1) microvessels; P〈 0.05-0.01], and those at 3, 7, 14 and 28 days were obviously more in the VEGF-treated group than in the control group [(8.3±2.0), (13.4±1.4), (15.5±2.3), (6.8± 1.0) microvessels; (3.4±0.6), (6.0±1.1), (9.0±0.9), (3.2±0.8) microvessels; P 〈 0.01]. (2) Positive expressions of the factors of vascular pseudohemophilia in the surrounding regions of infarcted sites: There were no obvious changes at different time points in the sham-operated group. In the control group, the changing law of the expressions was the same as that for the number of microvessels that the expression began to mildly increase at 7 days, reached the peak value at 14 days, and began to reduce at 28 days. In the VEGF-treated group, the expression was obviously increased at 3 days, also reached the peak value at 14 days, and reduced to the normal level at 70 days, but the expressions were obviously stronger than those in the control group at the same time points. CONCLUSION: Angiogenesis can be obviously induced in rabbits after the focal cerebral ischemia/reperfusion injury is treated with VEGF for 18 days. 展开更多
关键词 VEGF Vascular endothelial growth factor induced angiogenesis following focal cerebral ischemia/reperfusion injury in rabbits
下载PDF
Effect of calcitonin gene-related peptide and nerve growth factor on spatial learning and memory abilities of rats following focal cerebral ischemia/reperfusion
2
作者 Guangshun Zheng1, Yongjie Yang2, Xiubin Fang3 1Department of Neurosurgery, Second Hospital of Xiamen, Xiamen 361021, Fujian Province, China 2Department of Neurosurgery, Second Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning Province, China 3Department of Neurobiology, Basic Medical College of China Medical University, Shenyang 110001, Liaoning Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第8期673-676,共4页
BACKGROUND: Calcitonin gene-related peptide (CGRP) and nerve growth actor (NGF) cam improve spatial learning and memory abilities of rats with cerebral ischemia/reperfusion; however, the effect of combination of them ... BACKGROUND: Calcitonin gene-related peptide (CGRP) and nerve growth actor (NGF) cam improve spatial learning and memory abilities of rats with cerebral ischemia/reperfusion; however, the effect of combination of them on relieving learning and memory injury following cerebral ischemia/reperfusion should be further studied. OBJECTIVE: To study the effects of exogenous CGRP and NGF on learning and memory abilities of rats with focal cerebral ischemia/reperfusion. DESIGN: Randomized controlled animal study. SETTING: Department of Neurosurgery, the Second Hospital of Xiamen; Department of Neurosurgery, the Second Affiliated Hospital of China Medical University; Department of Neurobiology, Basic Medical College of China Medical University. MATERIALS: A total of 30 healthy male SD rats, aged 8 weeks, of clean grade, weighing 250-300 g, were provided by Experimental Animal Department of China Medical University. All rats were randomly divided into sham-operation group, ischemia/reperfusion group and treatment group with 10 in each group. The main reagents were detailed as the follows: 100 g/L chloral hydrate, 0.5 mL CGRP (2 mg/L, Sigma Company, USA), and NGF (1× 106 U/L, 0.5 mL, Siweite Company, Dalian). METHODS: The experiment was carried out in the Department of Neurobiology, Basic Medical College of China Medical University from February to July 2005. Rat models of middle cerebral artery occlusion were established by method of occlusion, 2 hours after that rats were anesthetized and the thread was slightly drawn out for 10 mm under direct staring to perform reperfusion. Rats in the ischemia/reperfusion group received intraperitoneal injection of 1 mL saline via the abdomen at two hours later, while rats in the treatment group at 2 hours later received intraperitoneal injection of 2 mg/L CGRP (0.5 mL) and 1×106 U/L NGF (0.5 mL) once a day for 10 successive days. First administration was accomplished within 15 minutes after ischemia/reperfusion. Rats in the sham-operation group were separated of the vessels without occlusion or administration. The neural function was evaluated with Zea Longa 5-grade scale. Animals with the score of one, two and three points received Morris water-maze test to measure searching time on platform (omitting platform-escaping latency). Meanwhile, leaning and memory abilities of animals were reflected through testing times of passing through platform per minute. MAIN OUTCOME MEASURES: Experimental results of omitting platform-escaping latency and spatial probe. RESULTS: Three and two rats in the ischemia/reperfusion group and treatment group respectively were not in accordance with the criteria in the process, and the rest were involved in the final analysis. ① Comparisons of platform-escaping latency during Morris water-maze test in all the three groups: Ten days after modeling, the platform-escaping latency in the ischemia/reperfusion group was obviously longer than that in sham-operation group (P < 0.01), and was significantly shorter than that in the treatment group (P < 0.01). ② Comparisons of times of passing through platform in all the three groups: Times of passing through platform were remarkably less in the ischemia/reperfusion group than those in the sham-operation group [(1.79±0.39), (4.30±0.73) times/minute, P < 0.01], and those were markedly more in the treatment group than the ischemia/reperfusion group [(3.16±1.03), (1.79±0.39) times/minute, P < 0.01]. CONCLUSION: CGRP and NGF are capable of ameliorating the abilities of spatial learning and memory in MCAO rats, which indicates that CGRP and NGF can protect ischemic neurons. 展开更多
关键词 Effect of calcitonin gene-related peptide and nerve growth factor on spatial learning and memory abilities of rats following focal cerebral ischemia/reperfusion CGRP MCAO gene
下载PDF
Electro-acupuncture for STAT3 expression and nuclear translocation in hippocampal tissues of rats following cerebral ischemia/reperfusion
3
作者 Lihong Kong1, Xiaoling Zeng1, Guojie Sun1, Shenghong Liu2 1Staff Room of Acupuncture and Moxibustion, Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine, Wuhan 430061, Hubei Province, China 2Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第8期717-720,共4页
BACKGROUND: It has been found in recent years that STAT3 widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release... BACKGROUND: It has been found in recent years that STAT3 widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release of some cytokines and growth factors, while electro-acupuncture may have multi-level, multi-channel and multi-target protective and interventional effects on ischemic brain injury. OBJECTIVE: To observe the effects of electro-acupuncture on STAT3 expression and nuclear translocation in hippocampal CA1 region of rat models of brain ischemia/reperfusion. DESIGN: Randomized and controlled observation. SETTING: Staff Room of Acupuncture and Moxibustion, Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine; Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Seventy-two healthy SD rats, of clean degree and either gender, weighing (200±20) g, were provided by the Experimental Animal Center of Hubei College of Traditional Chinese Medicine. STAT3 monoclonal antibody was purchased from Santa Cruz Company, USA, and G-6805 electro-acupuncture instrument was purchased from Shanghai Medical Electronic Instruments Factory. METHODS: This experiment was carried out in the comprehensive laboratory of Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine between September 2005 and February 2006. Seventy-two rats were randomly divided into 4 groups: ① control group(n =6): Untouched. ② Sham-operation group (n =18): Artery was isolated, but without inserting thread bolt.③ Model group (n =24): Rat models of local brain ischemia/reperfusion were established with modified suture occlusion. ④Electro-acupuncture group (n =24): Dazhui and bilateral Neiguan points were selected for electro-acupuncture treatment. No. 28 acupuncture needle of 3.33 cm was used in the treatment. A G-6085 electro-acupuncture instrument with continuous wave, frequency of 120 times/min, intensity of 1 mA, 30 min/time, was used. Acupuncture was conducted firstly at ischemia/reperfusion 3 hours, then once every 12 hours. STAT3 positive nuclear translocation in hippocampal CA1 region of rats was observed with immunohistochemical method at 24, 48 and 72 hours after brain ishcemia/reperfusion, and then STAT3 positive cells were counted. MAIN OUTCOME MEASURES: STAT3 positive cells and nuclear translocation in hippocampal CA1 region of rats in each group. RESULTS: All the 72 rats were involved in the result analysis. ①In the control group and sham-operation group, STAT3 positive cells with light cytoplasm and nucleus were decreased , and nuclear translocation was not found. ② In the model group, STAT3 positive cells were mostly found in the cytoplasm of the hippocampal CA1 region at the ischemic side of rats after ischemia/reperfusion 24 hours. They were significantly more than those in the sham-operation group and control group [(18.00±2.68), (9.00±1.35), (8.00±1.22) cells/ mm2, P < 0.01], but cells with nuclear reaction were fewer; At ischemia/reperfusion 48 and 72 hours, STAT3 positive cells were increased, and they were significantly more than those of sham-operation group [(25.00±3.23), (35.00±3.52) cells/mm2, (13.00±1.93), (12.00±1.24) cells/mm2, P < 0.01]. Positive cells with nuclear reaction were found dark-stained. ③At ischemia/reperfusion 24, 48 and 72 hours, STAT3 positive cells were strongly expressed in hippocampal CA1 region at ischemic side of rats of electro-acupuncture group, and they were significantly more than those of model group [(25±3.52), (50±6.31), (75±8.09) cells/mm2, P < 0.01]. STAT3 positive cells were gradually enhanced with time, and considerable STAT3 nuclear positive reaction cells were found. CONCLUSION: Electro-acupuncture can activate STAT3 protein expression in hippocampal tissue of rats with local brain ischemia/reperfusion, promote STAT3 nuclear translocation and function its neuroprotective effect. 展开更多
关键词 STAT Electro-acupuncture for STAT3 expression and nuclear translocation in hippocampal tissues of rats following cerebral ischemia/reperfusion
下载PDF
Expression of bradykinin as a substrate of CD26 /DPP IV in rats ischemia/reperfusion injury following lung transplantation
4
作者 唐政 《外科研究与新技术》 2011年第4期298-298,共1页
Objective To investigate the expression of bradykinin as a substrate of CD26 /DPP IV in rats with ischemia/reperfusion injury following lung transplantation ( LTx) . Methods Thirty - six syngeneic male SD rats were ra... Objective To investigate the expression of bradykinin as a substrate of CD26 /DPP IV in rats with ischemia/reperfusion injury following lung transplantation ( LTx) . Methods Thirty - six syngeneic male SD rats were randomly allocated into control group and experimental group ( n = 18 each) ,and 36 rats served as do- 展开更多
关键词 lung DPP IV in rats ischemia/reperfusion injury following lung transplantation Expression of bradykinin as a substrate of CD26 IV CD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部