Effect of Siqi decoction on myocardial ischemia is to prevent cardiac myocyte membrane from damage associated with oxygen free radicals related to NO. To research the regulatoin of the content of malondialdehyde by Si...Effect of Siqi decoction on myocardial ischemia is to prevent cardiac myocyte membrane from damage associated with oxygen free radicals related to NO. To research the regulatoin of the content of malondialdehyde by Siqi decoction, an index of lipid peroxidation, via increasing activity of superoxide dismutase in blood serum of rats with Myocardial Ischemia, the model of myocardium ischemia was made in Wistar rats with posterior pituitary injection through vein in tail. Siqi decoction, Diaoxinxuekang(DK) and Fufangdanshenpian(FD), the latter two drugs of which are effective TCM drugs of anti-myocardial ischemia at present, were administrated to the rats with myocardium ischemia for 5 days to compare the effect of them on myocardium ischemia as reference drugs via measuring the changes of the content of malondialdehyde and the activity of superoxide dismutase in the rat blood serum with myocardial ischemia. There were a remarkable increase in the activity of superoxide dismutase and a decrease in the content of malondialdehyde in the serum of the rats administered Siqi decoction compared with those of the rats in control group, p〈0.05. The contents of MDA in the serum of the prevention group rats in the experiments are lower than those of the cure group rats. Anti-Myocardium Ischemia mechanism of Siqi decoction is the regulation of the content of malondialdehyde via increasing activity of superoxide dismutase in the serum of Rats with myocardial ischemia and stimulating the activity of NOS in serum so as to increase NO concentration.展开更多
To observe changes in activity of superoxide dismutase (SOD) and content of malondialdehyde (MDA) in rats with monocrotaline-induced pulmonary hypertension. Methods: Adult ma1e Sprague-Dawley rats were given a single ...To observe changes in activity of superoxide dismutase (SOD) and content of malondialdehyde (MDA) in rats with monocrotaline-induced pulmonary hypertension. Methods: Adult ma1e Sprague-Dawley rats were given a single subcutaneous injection of monocrotaline (MCT, 60 mg/kg) for modeling PH. Activities of SOD and contents of MDA in plasma and pulmonary homogenate were measured by colorimetric analysis. The thickness of the media of pulmonary arterioles (external diameter <100μm) was measured using colour image analysis system. Results: Four weeks after injection of MCT, activities of SOD in venous plasma and pulmonary homogenate for MCT group were 106±45 NU/ml (P<0.05) and 317±59 NU/ml (P<0.01) respectively, whileactivities of SOD for control group were 159±28 NU/ml (P<0.05) and 505±47 NU/ml (P<0.01) respectively.COntents of MDA in venous plasma and pulmonary homogenate for MCT group were 15±5 and 59±14 μmol/L,while contents of MDA for control group were 5. 3±2. 8 and 32±19 ±mol/L. The thickness of the media of pulmonary arterioles increased significantly. Conclusion: The primary cause of PH is the injury of pulmonary vascular endothelial cells by MCT, which decreases the O2 removing ability of the lungs but increases lipid peroxidation,thus inducing PH.展开更多
BACKGROUND: Several studies have demonstrated that low molecular weight heparin-superoxide dismutase (LMWH-SOD) conjugate may exhibit good neuroprotective effects on cerebral ischemia/reperfusion injury though anti...BACKGROUND: Several studies have demonstrated that low molecular weight heparin-superoxide dismutase (LMWH-SOD) conjugate may exhibit good neuroprotective effects on cerebral ischemia/reperfusion injury though anticoagulation, decreasing blood viscosity, having anti-inflammatory activity, and scavenging oxygen free radicals. OBJECTIVE: To investigate the intervention effects of LMWH-SOD conjugate on serum levels of nitric oxide (NO), glutathione peroxidase (GSH-Px), and myeloperoxidase (MPO) following cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A randomized, controlled, and neurobiochemical experiment was performed at the Institute of Biochemical Pharmacy, School of Pharmaceutical Sciences, Shandong University between April and July 2004. MATERIALS: A total of 60 Mongolian gerbils of either gender were included in this study. Total cerebral ischemia/reperfusion injury was induced in 50 gerbils by occluding bilateral common carotid arteries. The remaining 10 gerbils received a sham-operation (sham-operated group). Kits of SOD, NO, and MPO were sourced from Nanjing Jiancheng Bioengineering Institute, China. LMWH, SOD, and LMWH-SOD conjugates were provided by Institute of Biochemistry and Biotechnique, Shandong University, China. METHODS: Fifty successful gerbil models of total cerebral ischemia/reperfusion injury were evenly randomized to five groups: physiological saline, LMWH-SOD, SOD, LMWH + SOD, and LMWH. At 2 minutes prior to ischemia, 0.5 mL/65 g physiological saline, 20 000 U/kg LMWH-SOD conjugate, 20 000 U/kg SOD, a mixture of SOD (20 000 U/kg) and LMWH (LMWH dose calculated according to weight ratio, LMWH: SOD = 23.6:51), and LMWH (dose as in the LMWH + SOD group) were administered through the femoral artery in each above-mentioned group, respectively. MAIN OUTCOME MEASURES: Serum levels of NO, MPO, and GSH-Px. RESULTS: Compared with 10 sham-operated gerbils, the cerebral ischemia/reperfusion injury gerbils exhibited decreased serum levels of GSH-Px and increased serum levels of NO and MPO (P 〈 0.01). The serum level of GSH-Px was significantly upregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01), compared with the physiological saline group (P 〈 0.05-0.01). Following medical treatment, serum levels of NO and MPO were significantly downregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01). Serum levels of GSH-Px, NO, and MPO in the LMWH-SOD group were close to those in the sham-operated group (P 〉 0.05). CONCLUSION: In cerebral ischemia/reperfusion injury, LMWH-SOD conjugate exhibits stronger neuroprotective effects on free radical scavenging, inflammation inhibition, and cytotoxicity inhibition than simple or combined application of LMWH and SOD by downregulating NO and MPO levels and upregulating the GSH-Px level.展开更多
BACKGROUND : The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the path...BACKGROUND : The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the pathophysiological process of cerebral ischemia reperfusion injury still needs further investigation. OBJECTIVE: To observe the effects of phycocyanin on the expression of superoxide dismutase (SOD) apoptosis and form of the nerve cells in rats after cerebral ischemia reperfusion injury. DESIGN: A randomized control animal experiment SETTING : Institute of Cerebrovascular Disease, Medical School Hospital of Qingdao University MATERIALS: Fifty-two healthy adult male Wistar rats of clean degree, weighing 220-260 g, were used. Phycocyanin was provided by the Institute of Oceanology, Chinese Academy of Sciences. METHODS: The experiments were carried out in Shangdong Key Laboratory for Prevention and Treatment of Brain Diseases from May to December 2005. ① All the rats were divided into three groups according to the method of random number table: sham-operated group (n=4), control group (n=24) and treatment group (n=24). Models of middle cerebral artery occlusion/reperfusion (MCAO/R) were established by the introduction of thread through external and internal carotid arteries in the control group and treatment group. After 1-hour ischemia and 2-hour reperfusion, rats in the treatment group were administrated with gastric perfusion of phy- cocyanin suspension (0.1 mg/g), and those in the control group were given saline of the same volume, and no treatment was given to the rats in the sham-operated group. ②The samples were removed and observed at ischemia for 1 hour and reperfusion for 6 and 12 hours and 1, 3, 7 and 14 days respectively in the control group and treatment group, 4 rats for each time point, and those were removed at 1 day postoperatively in the sham-operated group. Forms of the nerve cells were observed with toluidine blue staining. Apoptosis after cerebral ischemia reperfusion was detected with TUNEL technique. SOD expression was detected with immunohistochemical technique.③ The intergroup difference was compared with the ttest. MAIN OUTCOME MEASURES: The apoptosis of the nerve cells and SOD expression were mainly observed in each group. RESULTS: Finally, 52 rats were involved in the analysis of results. ① Number of apoptotic cells: In the sham-operated group, a few apoptotic cells could be observed in brain tissue. The apoptotic cells at each time point in the control group and treatment group were obviously more than those in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of apoptotic cells at 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 6 hours, 7 and 14 days were similar to those in the control group. ② Number of SOD positive cells: In the sham-operated group, there was weak expression of SOD in brain tissue, and the positive cells were extremely few, the positive cells at each time point were significantly more in the control group and treatment group than in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of positive cells at 6 and 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 7-14 days were similar to those in the control group. ③ Cellular forms: In the control group, the karyopyknosis occurred in the nerve cells, which were irregularly distributed, nucleolus disappeared, and some scattered cell fragments were observed. The forms of the nerve cells in the treatment group were generally normal. CONCLUSION : Phycocyanin plays a neuroprotective role in cerebral ischemia reperfusion injury by activating the SOD expression and inhibiting apoptosis.展开更多
Picroside II,the major active component of picroside,has been shown to induce PC12 cell axonal growth and relieve free radical damage.In vivo experiments have demonstrated that picroside II can improve neurological fu...Picroside II,the major active component of picroside,has been shown to induce PC12 cell axonal growth and relieve free radical damage.In vivo experiments have demonstrated that picroside II can improve neurological function in rats with cerebral ischemia/reperfusion injuries.In the present in vivo study,enzyme-linked immunosorbent assay and immunohistochemistry revealed that picroside II increased superoxide dismutase content and reduced inducible nitric oxide synthase content in the ischemic hemisphere.The effects of picroside II were similar to those of salvianic acid A sodium,an active control drug.These results indicate that picroside II exerts a neuroprotective effect,possibly by downregulating inducible nitric oxide synthase expression,increasing superoxide dismutase activity,and inhibiting neuronal apoptosis.展开更多
Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both an-tioxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemi...Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both an-tioxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-a and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and an-tiinflammatory actions.展开更多
AIM: To investigate the protective effect and mechanism of alanyl-glutamine dipeptide (Ala-GIn) against hepatic ischemia-reperfusion injury in rats. METHODS: Rats were divided into group C as normal control Group ...AIM: To investigate the protective effect and mechanism of alanyl-glutamine dipeptide (Ala-GIn) against hepatic ischemia-reperfusion injury in rats. METHODS: Rats were divided into group C as normal control Group (/7=16) and group G as alanyl-glutamine pretreatment 07=16). Rats were intravenously infused with 0.9% saline solution in group C and Ala-GIn -enriched (2% glutamine) 0.9% saline solution in group G via central venous catheter for three days. Then all rats underwent hepatic warm ischemia for 30 min followed by different periods of reperfusion. Changes in biochemical parameters, the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) in liver tissue, Bcl-2 and Bax protein expression and morphological changes of liver tissue were compared between both groups. RESULTS: One hour after reperfusion, the levels of liver enzymes in group G were significantly lower than those in group C (P〈0.05). Twenty-four hours after reperfusion, the levels of liver enzymes in both groups were markedly recovered and the levels of liver enzyme in group G were also significantly lower than those in group C (P〈0.01). One and 24 h after reperfusion, GSH content in group G was significantly higher than that in group C (P 〈0.05). There was no statistical difference in activities of SOD between the two groups. One and 24 h after reperfusion, the positive expression rate of Bcl-2 protein was higher in group G than in group C (P〈0.05) and the positive expression rate of Bax protein was lower in group G than in group C (P〈0.05). Histological and ultrastructural changes of liver tissue were inhibited in group C compared to group G. CONCLUSION: Our results suggest that Ala-GIn pretreatment provides the rat liver with significant tolerance to warm ischemia-reperfusion injury, which may be mediated partially by enhancing GSH content and regulating the expression of Bcl-2 and Bax proteins in the liver tissue.展开更多
BACKGROUND: Stellate ganglion block (SGB) plays a protective role on the brain, but the precise mechanism of action is not clear. OBJECTIVE: To simulate SGB by transection of the cervical sympathetic trunk (TCST...BACKGROUND: Stellate ganglion block (SGB) plays a protective role on the brain, but the precise mechanism of action is not clear. OBJECTIVE: To simulate SGB by transection of the cervical sympathetic trunk (TCST) and to investigate the TCST effects on changes in cerebral infarct volume and oxygen free radical levels in rats with focal cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A complete randomized control animal experiment was performed at the Institute of Neurological Diseases of Taihe Hospital, Yunyang Medical College from February to December 2005. MATERIALS: A total of 101 healthy Wistar rats, weighing 280-320 g, of both genders, aged 17-18 weeks, were used in this study. 2, 3, 5-triphenyltetrazolium chloride (TTC) was purchased from Changsha Hongyuan Biological Company. Superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) assay kits were provided by Nanjing Jiancheng Bioengineering Institute. METHODS: Rats were randomly divided into a TCST group, a model group and a sham operation group. Successful models were included in the final analysis, with at least 20 rats in each group. After TCST, rat models of focal cerebral ischemia/reperfusion injury were established in the TCST group by receiving middle cerebral artery occlusion (MCAO) by the intraluminal suture method for 2 hours, followed by 24 hours of reperfusion. Rat models of focal cerebral ischemia/reperfusion injury were made in the model group. Rats in the sham operation group underwent experimental procedures as for the model group, threading depth of 10 mm, and middle cerebral artery was not ligated. MAIN OUTCOME MEASURES: Brain tissue sections of ten rats from each group were used to measure cerebral infarct volume by TTC staining. Brain tissue homogenate of another ten rats from each group was used to detect SOD activities, MDA contents and NO levels. Rat neurological function was assessed by neurobehavioral measures. RESULTS: Cerebral infarct volume was bigger in the model group than in the TCST group (P 〈 0.05). Twenty four hours after cerebral ischemia/reperfusion, SOD activities were lower, whereas MDA contents and NO levels were higher in the TCST and model groups, compared with the sham operation group (P 〈 0.05 or P 〈 0.01). Compared with the model group, SOD activities were higher, whereas MDA contents and NO levels were lower in the TCST group (P 〈 0.05). CONCLUSION: After TCST, cerebral infarct volume is reduced, SOD activities are increased, and MDA contents and NO levels are decreased compared to the model group in rats with focal cerebral ischemia/reperfusion injury. These changes may be associated with TCST.展开更多
The effect of myocardium being subjected to 60 min ischemia and 60 min reperfusion incat cardiopulmonary bypass on level of lipid peroxides(LPO),function of myocardial mitochon-dria and activity of superoxides dismuta...The effect of myocardium being subjected to 60 min ischemia and 60 min reperfusion incat cardiopulmonary bypass on level of lipid peroxides(LPO),function of myocardial mitochon-dria and activity of superoxides dismutase(SOD)was studied. Myocardial mitochondrial functionwas depressed slightly 60 rain after ischemia but significantly 60 min after reperfusion.Increasedlipid peroxides content and decreased activity of SOD were observed at 60 rain after ischemia.Af-ter reperfusion,the activity of SOD continued decreasing,and LPO elevated still further.Theseresults support the hypothesis that free radicals may contribute to myocardial reperfusion injury.展开更多
In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion in...In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/ reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulated, the oxidative stress-related marker malondialdehyde was increased, and super- oxide dismutase activity was decreased in the ischemic cerebral cortex. Atorvastatin pretreatment significantly inhibited these changes. Our findings indicate that atorvastatin protects against ce-rebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects.展开更多
Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia repeffusion injury. Because both cardiovascular and cerebrovascular diseases ar...Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia repeffusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 pg/kg rutae- carpine were given to mice via intrapedtoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae- carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu- rological function following injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice.展开更多
The present study established a rabbit model of global cerebral ischemia using the 'six-vessel' method,which was reperfused after 30 minutes of ischemia.Rabbits received intravenous injection of propofol at 5 mg/kg ...The present study established a rabbit model of global cerebral ischemia using the 'six-vessel' method,which was reperfused after 30 minutes of ischemia.Rabbits received intravenous injection of propofol at 5 mg/kg prior to ischemia and 20 mg/kg per hour after ischemia until samples were prepared.Results revealed that propofol inhibited serum interleukin-8,endothelin-1 and malondialdehyde increases and promoted plasma superoxide dismutase activity after cerebral ischemia/reperfusion.In addition,cerebral cortex edema was attenuated with little neuronal nuclear degeneration and pyknosis with propofol treatment.The cross-sectional area of neuronal nuclei was,however,increased following propofol treatment.These findings suggested that propofol could improve anti-oxidant activity and inhibit synthesis of inflammatory factors to exert a protective effect on cerebral ischemia/reperfusion injury.展开更多
AIM: To compare the effects of extract F of red-rooted Salvia (EFRRS) on mucosal lesions of gastric corpus and antrum induced by hemorrhagic shock and reperfusion in rats. METHODS: The rats were subject to hemorrhagic...AIM: To compare the effects of extract F of red-rooted Salvia (EFRRS) on mucosal lesions of gastric corpus and antrum induced by hemorrhagic shock and reperfusion in rats. METHODS: The rats were subject to hemorrhagic shock and followed by reperfusion, and were divided randomly into two groups. Group 1 received saline, and group 2 received EFRRS intravenously. The index of gastric mucosal lesions (IGML) was expressed as the percentage of lesional area in the corpus or antrum. The degree of gastric mucosal lesions (DGML) was catalogued grade 0,1,2 and 3. The concentrations of prostaglandins (PGs) were measured by radioimmunoassay. The concentration of MDA was measured according to the procedures of Asakawa. The activity of SOD was measured by the biochemical way. The growth rates or inhibitory rates of above-mentioned parameters were calculated. RESULTS: As compared with IGML (%), grade 3 damage (%) and MDA content (nmol/g tissue) of gastric antrum which were respectively 7.96 +/- 0.59, 34.86 +/- 4.96 and 156.98 +/- 16.12, those of gastric corpus which were respectively 23.18 +/- 6.82, 58.44 +/- 9.07 and 230.56 +/- 19.37 increased markedly (P 【0.01), whereas the grade 0 damage, grade 1 damage, the concentrations of PGE(2) and PGI(2)(pg/mg tissue), the ratio of PGI(2)/TXA(2) and the activity of SOD (U/g tissue) of corpus which were respectively 3.01 +/- 1.01, 8.35 +/- 1.95, 540.48 +/- 182.78, 714.38 +/- 123.74, 17.38 +/- 5.93 and 134.29 +/- 13.35 were markedly lower than those of antrum which were respectively 13.92 +/- 2.25, 26.78 +/- 6.06, 2218.56 +/- 433.12, 2531.76 +/- 492.35, 43.46 +/- 8.51 and 187.45 +/- 17.67 (P【0.01) after hemorrhagic shock and reperfusion.After intravenous EFRRS, the growth rates (%) of grade 0 damage, grade 1 damage, the concentrations of PGE(2) and PGI(2), the ratio of PGI(2)/TXA(2) and the activity of SOD of corpus which were respectively 632.56, 308.62, 40.75, 74.75, 92.29 and 122.25 were higher than those in antrum which were respectively 104.89, 58.40, 11.12, 56.58, 30.65 and 82.64, whereas the inhibitory rates (%) of IGML, grade 3 damage and MDA content of gastric corpus were 82.93, 65.32 and 59.09, being higher than those of gastric antrum which were 76.64, 53.18 and 42.37. CONCLUSION: After hemorrhagic shock reperfusion, the gastric mucosal lesions in the corpus were more severe than those in the antrum, which were related not only to the different distribution of endogenous PGs in the mucosa, but also to the different ability of anti-oxidation of the mucosa. The protective effect of EFRRS on the gastric mucosa in the corpus was more evident than that in the antrum, which was related to higher growth degree of PGs contents and anti-oxitative ability in gastric corpus after administration of EFRRS.展开更多
Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proan-thocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and ...Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proan-thocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and 72 hours before reperfusion. Results showed that ginkgo proanthocyanidins could effectively mitigate neurological disorders, shorten infarct volume, increase superoxide dismutase activity, and de-crease malondialdehyde and nitric oxide contents. Simultaneously, the study on grape seed proanthocyanidins (40 mg/kg) confirmed that different sources of proanthocyanidins have a similar effect. The neurological outcomes of ginkgo proanthocyanidins were similar to that of nimodipine in the treatmen't of cerebral ischemia/reperfusion injury. (Sur results suggestthat-ginkgo proanthocyanidins can effectively lessen cerebral ischemia/reperfusion injury and protect ischemic brain tissue and these effects are associated with antioxidant properties.展开更多
Based on previous studies that have shown flavonoids from the stems and leaves of Scutellaria baicalensis Georgi are neuroprotective agents in a naturally senile, D-galactose, aging in vivo model, as well as an in vit...Based on previous studies that have shown flavonoids from the stems and leaves of Scutellaria baicalensis Georgi are neuroprotective agents in a naturally senile, D-galactose, aging in vivo model, as well as an in vitro model of oxidative/hypoxic injury, we established a cerebral ischemia/reperfusion model in rats by middle cerebral artery occlusion. The light/electron microscopic observations found significant neuropathological changes including neuron loss or swelling and rough endoplasmic reticulum injury. Moreover, the activities of lactate dehydrogenase Na+-K+-ATPase, Ca2+-ATPase and superoxide dismutase were significantly lowered, and the levels of malonaldehyde increased. In addition, the memory of rats worsened. However, treatment with flavonoids from Scutellaria baicalensis Georgi (35, 70 and 140 mg/kg) for 13 days dramatically improved the above abnormal changes. These results suggest that the ability of flavonoids from Scutellaria baicalensis Georgi in attenuating cerebral functional and morphological consequences after cerebral ischemia/reperfusion may be beneficial for the treatment of ischemic brain disease.展开更多
To explore the influence and significance of the ischemia reperfusion on the hepatic neoplasm, the hepatic VX2 neoplasm model of rabbits was established under the guide of ultrasonography; and ischemia was caused by u...To explore the influence and significance of the ischemia reperfusion on the hepatic neoplasm, the hepatic VX2 neoplasm model of rabbits was established under the guide of ultrasonography; and ischemia was caused by using a non-traumatic vascular clamp to block the branches distributing in the left-middle lobe of the hepatic artery for 60 min, and subsequently the clamp was removed and the reperfusion injury of hepatic neoplasm occurred. At different time-points, the normal and hepatic neoplasm tissues of the animal models were taken out to detect the superoxide dismutase (SOD) and malondialdehyde (MDA) respectively.The results show that the products and injurious effects of oxygen free radical (OFR) of the neoplasm tissues are more serious than those of the normal hepatic tissues.展开更多
Objective:To investigate the protective effect of sinomenine stellate ganglion block(SGB)on chronic myocardial ischemia and its related mechanism.Methods:SD male and female rats(180~200g)were randomly divided into fou...Objective:To investigate the protective effect of sinomenine stellate ganglion block(SGB)on chronic myocardial ischemia and its related mechanism.Methods:SD male and female rats(180~200g)were randomly divided into four groups:blank group,model group,lidocaine group,lidocaine+sinomenine group.The rats in blank group were fed with normal standard diet without modeling,and the other rats were fed with high-fat diet.After 8 weeks of feeding,the rats in high-fat diet group were significantly different from those in blank control group.Then they were randomly divided into 3 groups,10 rats in model group were injected with 0.9%NaCl into right stellate ganglion(RSG)After 2 weeks of continuous injection,pituitrin injection was continuously injected into sublingual vein of rats for 3 days,once every 24 hours;lidocaine group rats were injected with 0.24 mL 1%lidocaine injection in RSG,the rest was the same as model group;lidocaine+sinomenine group rats were injected with 0.24 mL 1%lidocaine injection+0.095 mL sinomenine hydrochloride+2.9 mL 0.8 mL 0.8 mL in RSG,the rest was the same as model group.At the end of the eighth week of the experiment,the rats in the high-fat diet feeding group and the standard ordinary diet feeding group were given the medicine after there was significant difference in blood lipid;before the third injection of pituitrin,the ECG changes of the rats in each group were observed;the general situation of the rats before and after the administration was observed;after the experiment,the blood of the rats in each group was taken from the abdominal aorta,and the serum oxidative stress indexes,such as total superoxide dismutase(SOD)and malondialdehyde,were detected(MDA,IL-6 and cTnI were measured.Results:compared with the blank group,the ECG of the model group changed significantly(P<0.01),the cTnI value increased significantly(P<0.01),indicating that the rat myocardial ischemia model was successfully established;compared with the model group,the SOD level of lidocaine group and lidocaine+sinomenine group increased significantly(P<0.05,P<0.01),the MDA level decreased significantly(P<0.05,P<0.01),IL-6 decreased significantly(P<0.05,P<0.01)05,P<0.01).Conclusion:sinomenine SGB has protective effect on rats with chronic myocardial ischemia,which is related to anti oxidative stress and inhibition of inflammatory reaction.展开更多
Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in viv...Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.展开更多
Objective To investigate the effects of erigeron breviscapus (Vant.) Hand-Mazz (erigeron breviscapus) pretreatment on pathology and oxyradical level in the spinal cord after ischemia-reperfusion (I/R) injury in rabbit...Objective To investigate the effects of erigeron breviscapus (Vant.) Hand-Mazz (erigeron breviscapus) pretreatment on pathology and oxyradical level in the spinal cord after ischemia-reperfusion (I/R) injury in rabbits. Methods A total of 40 New Zealand white rabbits were randomly divided into three groups: sham-operation group with 10 rabbits treated with only abdominal aorta exposure without occlusion,control group with 15 rabbits that underwent ischemia for 50 minutes and treated with matched saline,and experimental group with 15 rabbits that underwent ischemia for 50 minutes and treated with erigeron breviscapus (9mg/kg) injection before ischemia. Malondialdehyde (MDA) level and superoxide dismutase (SOD) activity in the spinal cord were examined at 6 and 24 hours after I/R,respectively. The morphological changes and the number of the spinal cord anterior horn motor neurons were observed and counted under the light microscope and electron microscope,respectively. Results The level of MDA was markedly decreased and SOD activity was increased in the experimental group compared with those in the control group (P<0.01). Compared with that in the control group,the number of motor neurons in the experimental group significantly increased at 24h after I/R (P<0.01) and the morphous of the motor neurons improved. Conclusion Erigeron breviscapus can reduce oxyradical production and the apoptosis of nerve cells,and protect nerve tissue structure and function after spinal cord I/R.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.30570404 and 30670458)the Natural Science Foundation of Jilin Province,China(No.20050561)
文摘Effect of Siqi decoction on myocardial ischemia is to prevent cardiac myocyte membrane from damage associated with oxygen free radicals related to NO. To research the regulatoin of the content of malondialdehyde by Siqi decoction, an index of lipid peroxidation, via increasing activity of superoxide dismutase in blood serum of rats with Myocardial Ischemia, the model of myocardium ischemia was made in Wistar rats with posterior pituitary injection through vein in tail. Siqi decoction, Diaoxinxuekang(DK) and Fufangdanshenpian(FD), the latter two drugs of which are effective TCM drugs of anti-myocardial ischemia at present, were administrated to the rats with myocardium ischemia for 5 days to compare the effect of them on myocardium ischemia as reference drugs via measuring the changes of the content of malondialdehyde and the activity of superoxide dismutase in the rat blood serum with myocardial ischemia. There were a remarkable increase in the activity of superoxide dismutase and a decrease in the content of malondialdehyde in the serum of the rats administered Siqi decoction compared with those of the rats in control group, p〈0.05. The contents of MDA in the serum of the prevention group rats in the experiments are lower than those of the cure group rats. Anti-Myocardium Ischemia mechanism of Siqi decoction is the regulation of the content of malondialdehyde via increasing activity of superoxide dismutase in the serum of Rats with myocardial ischemia and stimulating the activity of NOS in serum so as to increase NO concentration.
文摘To observe changes in activity of superoxide dismutase (SOD) and content of malondialdehyde (MDA) in rats with monocrotaline-induced pulmonary hypertension. Methods: Adult ma1e Sprague-Dawley rats were given a single subcutaneous injection of monocrotaline (MCT, 60 mg/kg) for modeling PH. Activities of SOD and contents of MDA in plasma and pulmonary homogenate were measured by colorimetric analysis. The thickness of the media of pulmonary arterioles (external diameter <100μm) was measured using colour image analysis system. Results: Four weeks after injection of MCT, activities of SOD in venous plasma and pulmonary homogenate for MCT group were 106±45 NU/ml (P<0.05) and 317±59 NU/ml (P<0.01) respectively, whileactivities of SOD for control group were 159±28 NU/ml (P<0.05) and 505±47 NU/ml (P<0.01) respectively.COntents of MDA in venous plasma and pulmonary homogenate for MCT group were 15±5 and 59±14 μmol/L,while contents of MDA for control group were 5. 3±2. 8 and 32±19 ±mol/L. The thickness of the media of pulmonary arterioles increased significantly. Conclusion: The primary cause of PH is the injury of pulmonary vascular endothelial cells by MCT, which decreases the O2 removing ability of the lungs but increases lipid peroxidation,thus inducing PH.
文摘BACKGROUND: Several studies have demonstrated that low molecular weight heparin-superoxide dismutase (LMWH-SOD) conjugate may exhibit good neuroprotective effects on cerebral ischemia/reperfusion injury though anticoagulation, decreasing blood viscosity, having anti-inflammatory activity, and scavenging oxygen free radicals. OBJECTIVE: To investigate the intervention effects of LMWH-SOD conjugate on serum levels of nitric oxide (NO), glutathione peroxidase (GSH-Px), and myeloperoxidase (MPO) following cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A randomized, controlled, and neurobiochemical experiment was performed at the Institute of Biochemical Pharmacy, School of Pharmaceutical Sciences, Shandong University between April and July 2004. MATERIALS: A total of 60 Mongolian gerbils of either gender were included in this study. Total cerebral ischemia/reperfusion injury was induced in 50 gerbils by occluding bilateral common carotid arteries. The remaining 10 gerbils received a sham-operation (sham-operated group). Kits of SOD, NO, and MPO were sourced from Nanjing Jiancheng Bioengineering Institute, China. LMWH, SOD, and LMWH-SOD conjugates were provided by Institute of Biochemistry and Biotechnique, Shandong University, China. METHODS: Fifty successful gerbil models of total cerebral ischemia/reperfusion injury were evenly randomized to five groups: physiological saline, LMWH-SOD, SOD, LMWH + SOD, and LMWH. At 2 minutes prior to ischemia, 0.5 mL/65 g physiological saline, 20 000 U/kg LMWH-SOD conjugate, 20 000 U/kg SOD, a mixture of SOD (20 000 U/kg) and LMWH (LMWH dose calculated according to weight ratio, LMWH: SOD = 23.6:51), and LMWH (dose as in the LMWH + SOD group) were administered through the femoral artery in each above-mentioned group, respectively. MAIN OUTCOME MEASURES: Serum levels of NO, MPO, and GSH-Px. RESULTS: Compared with 10 sham-operated gerbils, the cerebral ischemia/reperfusion injury gerbils exhibited decreased serum levels of GSH-Px and increased serum levels of NO and MPO (P 〈 0.01). The serum level of GSH-Px was significantly upregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01), compared with the physiological saline group (P 〈 0.05-0.01). Following medical treatment, serum levels of NO and MPO were significantly downregulated in all groups, in particular in the LMWH-SOD group (P 〈 0.01). Serum levels of GSH-Px, NO, and MPO in the LMWH-SOD group were close to those in the sham-operated group (P 〉 0.05). CONCLUSION: In cerebral ischemia/reperfusion injury, LMWH-SOD conjugate exhibits stronger neuroprotective effects on free radical scavenging, inflammation inhibition, and cytotoxicity inhibition than simple or combined application of LMWH and SOD by downregulating NO and MPO levels and upregulating the GSH-Px level.
基金the Natural Science Foundation of Shandong Province, No. Y2004C04
文摘BACKGROUND : The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the pathophysiological process of cerebral ischemia reperfusion injury still needs further investigation. OBJECTIVE: To observe the effects of phycocyanin on the expression of superoxide dismutase (SOD) apoptosis and form of the nerve cells in rats after cerebral ischemia reperfusion injury. DESIGN: A randomized control animal experiment SETTING : Institute of Cerebrovascular Disease, Medical School Hospital of Qingdao University MATERIALS: Fifty-two healthy adult male Wistar rats of clean degree, weighing 220-260 g, were used. Phycocyanin was provided by the Institute of Oceanology, Chinese Academy of Sciences. METHODS: The experiments were carried out in Shangdong Key Laboratory for Prevention and Treatment of Brain Diseases from May to December 2005. ① All the rats were divided into three groups according to the method of random number table: sham-operated group (n=4), control group (n=24) and treatment group (n=24). Models of middle cerebral artery occlusion/reperfusion (MCAO/R) were established by the introduction of thread through external and internal carotid arteries in the control group and treatment group. After 1-hour ischemia and 2-hour reperfusion, rats in the treatment group were administrated with gastric perfusion of phy- cocyanin suspension (0.1 mg/g), and those in the control group were given saline of the same volume, and no treatment was given to the rats in the sham-operated group. ②The samples were removed and observed at ischemia for 1 hour and reperfusion for 6 and 12 hours and 1, 3, 7 and 14 days respectively in the control group and treatment group, 4 rats for each time point, and those were removed at 1 day postoperatively in the sham-operated group. Forms of the nerve cells were observed with toluidine blue staining. Apoptosis after cerebral ischemia reperfusion was detected with TUNEL technique. SOD expression was detected with immunohistochemical technique.③ The intergroup difference was compared with the ttest. MAIN OUTCOME MEASURES: The apoptosis of the nerve cells and SOD expression were mainly observed in each group. RESULTS: Finally, 52 rats were involved in the analysis of results. ① Number of apoptotic cells: In the sham-operated group, a few apoptotic cells could be observed in brain tissue. The apoptotic cells at each time point in the control group and treatment group were obviously more than those in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of apoptotic cells at 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 6 hours, 7 and 14 days were similar to those in the control group. ② Number of SOD positive cells: In the sham-operated group, there was weak expression of SOD in brain tissue, and the positive cells were extremely few, the positive cells at each time point were significantly more in the control group and treatment group than in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of positive cells at 6 and 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 7-14 days were similar to those in the control group. ③ Cellular forms: In the control group, the karyopyknosis occurred in the nerve cells, which were irregularly distributed, nucleolus disappeared, and some scattered cell fragments were observed. The forms of the nerve cells in the treatment group were generally normal. CONCLUSION : Phycocyanin plays a neuroprotective role in cerebral ischemia reperfusion injury by activating the SOD expression and inhibiting apoptosis.
基金the National Natural Science Foundation of China, No. 30873391, 81041092
文摘Picroside II,the major active component of picroside,has been shown to induce PC12 cell axonal growth and relieve free radical damage.In vivo experiments have demonstrated that picroside II can improve neurological function in rats with cerebral ischemia/reperfusion injuries.In the present in vivo study,enzyme-linked immunosorbent assay and immunohistochemistry revealed that picroside II increased superoxide dismutase content and reduced inducible nitric oxide synthase content in the ischemic hemisphere.The effects of picroside II were similar to those of salvianic acid A sodium,an active control drug.These results indicate that picroside II exerts a neuroprotective effect,possibly by downregulating inducible nitric oxide synthase expression,increasing superoxide dismutase activity,and inhibiting neuronal apoptosis.
基金supported by the Natural Science Foundation of Taishan Medical University in China,No.2007.ZR-087
文摘Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both an-tioxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-a and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and an-tiinflammatory actions.
基金Supported by the Natural Science Foundation of Liaoning Province, No. 20022063
文摘AIM: To investigate the protective effect and mechanism of alanyl-glutamine dipeptide (Ala-GIn) against hepatic ischemia-reperfusion injury in rats. METHODS: Rats were divided into group C as normal control Group (/7=16) and group G as alanyl-glutamine pretreatment 07=16). Rats were intravenously infused with 0.9% saline solution in group C and Ala-GIn -enriched (2% glutamine) 0.9% saline solution in group G via central venous catheter for three days. Then all rats underwent hepatic warm ischemia for 30 min followed by different periods of reperfusion. Changes in biochemical parameters, the content of glutathione (GSH) and the activity of superoxide dismutase (SOD) in liver tissue, Bcl-2 and Bax protein expression and morphological changes of liver tissue were compared between both groups. RESULTS: One hour after reperfusion, the levels of liver enzymes in group G were significantly lower than those in group C (P〈0.05). Twenty-four hours after reperfusion, the levels of liver enzymes in both groups were markedly recovered and the levels of liver enzyme in group G were also significantly lower than those in group C (P〈0.01). One and 24 h after reperfusion, GSH content in group G was significantly higher than that in group C (P 〈0.05). There was no statistical difference in activities of SOD between the two groups. One and 24 h after reperfusion, the positive expression rate of Bcl-2 protein was higher in group G than in group C (P〈0.05) and the positive expression rate of Bax protein was lower in group G than in group C (P〈0.05). Histological and ultrastructural changes of liver tissue were inhibited in group C compared to group G. CONCLUSION: Our results suggest that Ala-GIn pretreatment provides the rat liver with significant tolerance to warm ischemia-reperfusion injury, which may be mediated partially by enhancing GSH content and regulating the expression of Bcl-2 and Bax proteins in the liver tissue.
基金the Excellent Middle-aged and Youth Talent Program of Education Department of Hubei Province, No. 2002B03001
文摘BACKGROUND: Stellate ganglion block (SGB) plays a protective role on the brain, but the precise mechanism of action is not clear. OBJECTIVE: To simulate SGB by transection of the cervical sympathetic trunk (TCST) and to investigate the TCST effects on changes in cerebral infarct volume and oxygen free radical levels in rats with focal cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: A complete randomized control animal experiment was performed at the Institute of Neurological Diseases of Taihe Hospital, Yunyang Medical College from February to December 2005. MATERIALS: A total of 101 healthy Wistar rats, weighing 280-320 g, of both genders, aged 17-18 weeks, were used in this study. 2, 3, 5-triphenyltetrazolium chloride (TTC) was purchased from Changsha Hongyuan Biological Company. Superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) assay kits were provided by Nanjing Jiancheng Bioengineering Institute. METHODS: Rats were randomly divided into a TCST group, a model group and a sham operation group. Successful models were included in the final analysis, with at least 20 rats in each group. After TCST, rat models of focal cerebral ischemia/reperfusion injury were established in the TCST group by receiving middle cerebral artery occlusion (MCAO) by the intraluminal suture method for 2 hours, followed by 24 hours of reperfusion. Rat models of focal cerebral ischemia/reperfusion injury were made in the model group. Rats in the sham operation group underwent experimental procedures as for the model group, threading depth of 10 mm, and middle cerebral artery was not ligated. MAIN OUTCOME MEASURES: Brain tissue sections of ten rats from each group were used to measure cerebral infarct volume by TTC staining. Brain tissue homogenate of another ten rats from each group was used to detect SOD activities, MDA contents and NO levels. Rat neurological function was assessed by neurobehavioral measures. RESULTS: Cerebral infarct volume was bigger in the model group than in the TCST group (P 〈 0.05). Twenty four hours after cerebral ischemia/reperfusion, SOD activities were lower, whereas MDA contents and NO levels were higher in the TCST and model groups, compared with the sham operation group (P 〈 0.05 or P 〈 0.01). Compared with the model group, SOD activities were higher, whereas MDA contents and NO levels were lower in the TCST group (P 〈 0.05). CONCLUSION: After TCST, cerebral infarct volume is reduced, SOD activities are increased, and MDA contents and NO levels are decreased compared to the model group in rats with focal cerebral ischemia/reperfusion injury. These changes may be associated with TCST.
文摘The effect of myocardium being subjected to 60 min ischemia and 60 min reperfusion incat cardiopulmonary bypass on level of lipid peroxides(LPO),function of myocardial mitochon-dria and activity of superoxides dismutase(SOD)was studied. Myocardial mitochondrial functionwas depressed slightly 60 rain after ischemia but significantly 60 min after reperfusion.Increasedlipid peroxides content and decreased activity of SOD were observed at 60 rain after ischemia.Af-ter reperfusion,the activity of SOD continued decreasing,and LPO elevated still further.Theseresults support the hypothesis that free radicals may contribute to myocardial reperfusion injury.
基金the Natural Science Foundation of Hunan Province in China,No.11JJ5081grants from Hunan Provincial Science and Technology Department in China,No.2012SK3226 and 2011SK3236the National Natural Science Foudation of China,No.81271298/H0906
文摘In addition to its lipid-lowering effect, atorvastatin exerts anti-inflammatory and antioxidant effects as well. In this study, we hypothesized that atorvastatin could protect against cerebral isch-emia/reperfusion injury. The middle cerebral artery ischemia/reperfusion model was established, and atorvastatin, 6.5 mg/kg, was administered by gavage. We found that, after cerebral ischemia/ reperfusion injury, levels of the inflammation-related factors E-selectin and myeloperoxidase were upregulated, the oxidative stress-related marker malondialdehyde was increased, and super- oxide dismutase activity was decreased in the ischemic cerebral cortex. Atorvastatin pretreatment significantly inhibited these changes. Our findings indicate that atorvastatin protects against ce-rebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects.
基金financially supported by Zhangjiakou Science and Technology Commission Foundation,No.1021095Dthe Hebei North University Foundation,No.Q2010018
文摘Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia repeffusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 pg/kg rutae- carpine were given to mice via intrapedtoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae- carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu- rological function following injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice.
文摘The present study established a rabbit model of global cerebral ischemia using the 'six-vessel' method,which was reperfused after 30 minutes of ischemia.Rabbits received intravenous injection of propofol at 5 mg/kg prior to ischemia and 20 mg/kg per hour after ischemia until samples were prepared.Results revealed that propofol inhibited serum interleukin-8,endothelin-1 and malondialdehyde increases and promoted plasma superoxide dismutase activity after cerebral ischemia/reperfusion.In addition,cerebral cortex edema was attenuated with little neuronal nuclear degeneration and pyknosis with propofol treatment.The cross-sectional area of neuronal nuclei was,however,increased following propofol treatment.These findings suggested that propofol could improve anti-oxidant activity and inhibit synthesis of inflammatory factors to exert a protective effect on cerebral ischemia/reperfusion injury.
基金Supported by the National Natural Science Foundation of China.No.3870890
文摘AIM: To compare the effects of extract F of red-rooted Salvia (EFRRS) on mucosal lesions of gastric corpus and antrum induced by hemorrhagic shock and reperfusion in rats. METHODS: The rats were subject to hemorrhagic shock and followed by reperfusion, and were divided randomly into two groups. Group 1 received saline, and group 2 received EFRRS intravenously. The index of gastric mucosal lesions (IGML) was expressed as the percentage of lesional area in the corpus or antrum. The degree of gastric mucosal lesions (DGML) was catalogued grade 0,1,2 and 3. The concentrations of prostaglandins (PGs) were measured by radioimmunoassay. The concentration of MDA was measured according to the procedures of Asakawa. The activity of SOD was measured by the biochemical way. The growth rates or inhibitory rates of above-mentioned parameters were calculated. RESULTS: As compared with IGML (%), grade 3 damage (%) and MDA content (nmol/g tissue) of gastric antrum which were respectively 7.96 +/- 0.59, 34.86 +/- 4.96 and 156.98 +/- 16.12, those of gastric corpus which were respectively 23.18 +/- 6.82, 58.44 +/- 9.07 and 230.56 +/- 19.37 increased markedly (P 【0.01), whereas the grade 0 damage, grade 1 damage, the concentrations of PGE(2) and PGI(2)(pg/mg tissue), the ratio of PGI(2)/TXA(2) and the activity of SOD (U/g tissue) of corpus which were respectively 3.01 +/- 1.01, 8.35 +/- 1.95, 540.48 +/- 182.78, 714.38 +/- 123.74, 17.38 +/- 5.93 and 134.29 +/- 13.35 were markedly lower than those of antrum which were respectively 13.92 +/- 2.25, 26.78 +/- 6.06, 2218.56 +/- 433.12, 2531.76 +/- 492.35, 43.46 +/- 8.51 and 187.45 +/- 17.67 (P【0.01) after hemorrhagic shock and reperfusion.After intravenous EFRRS, the growth rates (%) of grade 0 damage, grade 1 damage, the concentrations of PGE(2) and PGI(2), the ratio of PGI(2)/TXA(2) and the activity of SOD of corpus which were respectively 632.56, 308.62, 40.75, 74.75, 92.29 and 122.25 were higher than those in antrum which were respectively 104.89, 58.40, 11.12, 56.58, 30.65 and 82.64, whereas the inhibitory rates (%) of IGML, grade 3 damage and MDA content of gastric corpus were 82.93, 65.32 and 59.09, being higher than those of gastric antrum which were 76.64, 53.18 and 42.37. CONCLUSION: After hemorrhagic shock reperfusion, the gastric mucosal lesions in the corpus were more severe than those in the antrum, which were related not only to the different distribution of endogenous PGs in the mucosa, but also to the different ability of anti-oxidation of the mucosa. The protective effect of EFRRS on the gastric mucosa in the corpus was more evident than that in the antrum, which was related to higher growth degree of PGs contents and anti-oxitative ability in gastric corpus after administration of EFRRS.
文摘Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proan-thocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and 72 hours before reperfusion. Results showed that ginkgo proanthocyanidins could effectively mitigate neurological disorders, shorten infarct volume, increase superoxide dismutase activity, and de-crease malondialdehyde and nitric oxide contents. Simultaneously, the study on grape seed proanthocyanidins (40 mg/kg) confirmed that different sources of proanthocyanidins have a similar effect. The neurological outcomes of ginkgo proanthocyanidins were similar to that of nimodipine in the treatmen't of cerebral ischemia/reperfusion injury. (Sur results suggestthat-ginkgo proanthocyanidins can effectively lessen cerebral ischemia/reperfusion injury and protect ischemic brain tissue and these effects are associated with antioxidant properties.
基金supported by the State Administration of Traditional Chinese Medicine of China,No. 02-03-ZP18Hebei Provincial Education Department,No. 20015Hebei Provincial Hundred Outstanding Innovated Talents,First Batch
文摘Based on previous studies that have shown flavonoids from the stems and leaves of Scutellaria baicalensis Georgi are neuroprotective agents in a naturally senile, D-galactose, aging in vivo model, as well as an in vitro model of oxidative/hypoxic injury, we established a cerebral ischemia/reperfusion model in rats by middle cerebral artery occlusion. The light/electron microscopic observations found significant neuropathological changes including neuron loss or swelling and rough endoplasmic reticulum injury. Moreover, the activities of lactate dehydrogenase Na+-K+-ATPase, Ca2+-ATPase and superoxide dismutase were significantly lowered, and the levels of malonaldehyde increased. In addition, the memory of rats worsened. However, treatment with flavonoids from Scutellaria baicalensis Georgi (35, 70 and 140 mg/kg) for 13 days dramatically improved the above abnormal changes. These results suggest that the ability of flavonoids from Scutellaria baicalensis Georgi in attenuating cerebral functional and morphological consequences after cerebral ischemia/reperfusion may be beneficial for the treatment of ischemic brain disease.
文摘To explore the influence and significance of the ischemia reperfusion on the hepatic neoplasm, the hepatic VX2 neoplasm model of rabbits was established under the guide of ultrasonography; and ischemia was caused by using a non-traumatic vascular clamp to block the branches distributing in the left-middle lobe of the hepatic artery for 60 min, and subsequently the clamp was removed and the reperfusion injury of hepatic neoplasm occurred. At different time-points, the normal and hepatic neoplasm tissues of the animal models were taken out to detect the superoxide dismutase (SOD) and malondialdehyde (MDA) respectively.The results show that the products and injurious effects of oxygen free radical (OFR) of the neoplasm tissues are more serious than those of the normal hepatic tissues.
基金National Administration of traditional Chinese medicine base project(No.jdzx2012144,jdzx2015253)Shaanxi provincial major disease TCM innovation plan:chest obstruction(coronary heart disease)+1 种基金Shaanxi Provincial Administration of traditional Chinese medicine scientific research project(No.15-scjh015,15-lc016,lcpt089,15-scjh016)discipline innovation team of the Second Affiliated Hospital of Shaanxi University of Chinese medicine(No.2020xktd-b03)。
文摘Objective:To investigate the protective effect of sinomenine stellate ganglion block(SGB)on chronic myocardial ischemia and its related mechanism.Methods:SD male and female rats(180~200g)were randomly divided into four groups:blank group,model group,lidocaine group,lidocaine+sinomenine group.The rats in blank group were fed with normal standard diet without modeling,and the other rats were fed with high-fat diet.After 8 weeks of feeding,the rats in high-fat diet group were significantly different from those in blank control group.Then they were randomly divided into 3 groups,10 rats in model group were injected with 0.9%NaCl into right stellate ganglion(RSG)After 2 weeks of continuous injection,pituitrin injection was continuously injected into sublingual vein of rats for 3 days,once every 24 hours;lidocaine group rats were injected with 0.24 mL 1%lidocaine injection in RSG,the rest was the same as model group;lidocaine+sinomenine group rats were injected with 0.24 mL 1%lidocaine injection+0.095 mL sinomenine hydrochloride+2.9 mL 0.8 mL 0.8 mL in RSG,the rest was the same as model group.At the end of the eighth week of the experiment,the rats in the high-fat diet feeding group and the standard ordinary diet feeding group were given the medicine after there was significant difference in blood lipid;before the third injection of pituitrin,the ECG changes of the rats in each group were observed;the general situation of the rats before and after the administration was observed;after the experiment,the blood of the rats in each group was taken from the abdominal aorta,and the serum oxidative stress indexes,such as total superoxide dismutase(SOD)and malondialdehyde,were detected(MDA,IL-6 and cTnI were measured.Results:compared with the blank group,the ECG of the model group changed significantly(P<0.01),the cTnI value increased significantly(P<0.01),indicating that the rat myocardial ischemia model was successfully established;compared with the model group,the SOD level of lidocaine group and lidocaine+sinomenine group increased significantly(P<0.05,P<0.01),the MDA level decreased significantly(P<0.05,P<0.01),IL-6 decreased significantly(P<0.05,P<0.01)05,P<0.01).Conclusion:sinomenine SGB has protective effect on rats with chronic myocardial ischemia,which is related to anti oxidative stress and inhibition of inflammatory reaction.
文摘Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.
文摘Objective To investigate the effects of erigeron breviscapus (Vant.) Hand-Mazz (erigeron breviscapus) pretreatment on pathology and oxyradical level in the spinal cord after ischemia-reperfusion (I/R) injury in rabbits. Methods A total of 40 New Zealand white rabbits were randomly divided into three groups: sham-operation group with 10 rabbits treated with only abdominal aorta exposure without occlusion,control group with 15 rabbits that underwent ischemia for 50 minutes and treated with matched saline,and experimental group with 15 rabbits that underwent ischemia for 50 minutes and treated with erigeron breviscapus (9mg/kg) injection before ischemia. Malondialdehyde (MDA) level and superoxide dismutase (SOD) activity in the spinal cord were examined at 6 and 24 hours after I/R,respectively. The morphological changes and the number of the spinal cord anterior horn motor neurons were observed and counted under the light microscope and electron microscope,respectively. Results The level of MDA was markedly decreased and SOD activity was increased in the experimental group compared with those in the control group (P<0.01). Compared with that in the control group,the number of motor neurons in the experimental group significantly increased at 24h after I/R (P<0.01) and the morphous of the motor neurons improved. Conclusion Erigeron breviscapus can reduce oxyradical production and the apoptosis of nerve cells,and protect nerve tissue structure and function after spinal cord I/R.