期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Contribution to the Ground Water Hydrology of the Quaternary Aquifer in West Ismailia Area, Egypt
1
作者 Salah Abdelwahab El-Sayed 《Journal of Geoscience and Environment Protection》 2018年第7期134-158,共25页
Hydrologic conditions of the ground water of the Quaternary aquifer in west Ismailia area, Egypt, were characterized based on new hydrologic data collected in 2017. The Quaternary aquifer consists of alluvial deposits... Hydrologic conditions of the ground water of the Quaternary aquifer in west Ismailia area, Egypt, were characterized based on new hydrologic data collected in 2017. The Quaternary aquifer consists of alluvial deposits. The grain size distribution results indicate that the major part of the aquifer deposits is formed of medium to coarse grained sand with medium uniformity coefficients ranging between 2.5 and 10. They also reflect the heterogeneity, anisotropy and high productivity of the aquifer. The estimated aquifer parameters range from 29% to 41% for total porosity, from 18.71 m/day to 63.95 m/day for horizontal hydraulic conductivity, from 8.94 m/day to 61.6 m/day for vertical hydraulic conductivity, from 1.01 to 4.27 for anisotropy and from 1870 m2/day to 6549 m2/day for transmissivity. The ground water flows mainly from the north and northeast recharge sources (Ismailia and El Manaief canals) and from the south recharge area (Miocene aquifer), with an average hydraulic gradient of 0.00438. The recharge rate to the aquifer (from the southern area) and the Darcy’s velocity of ground water are estimated to be 447 × 106 m3/year and 0.203 m/day (on average), respectively. A great change in the hydrologic setting of the aquifer is occurred during the period of 1992-2017, where the groundwater flow has changed during that period. The aquifer contains fresh to saline water. An oxidizing (alkaline) environment is reported for the aquifer, as revealed from the relationship between the redox potential (185 - 836 mV) and pH (5.2 - 7.5 standard units). This indicated the capability of ground water to dissolve heavy metals associated to rock-forming minerals. A wide variation in the concentrations of total dissolved solids (320 - 7385 mg/l) and dissolved oxygen (2.13 - 8.4 mg/l) in the Quaternary aquifer is observed, reflecting the local variation of the environmental and geologic conditions and indicating the influence of different recharge sources. 展开更多
关键词 Ground Water Flow and RECHARGE Hydraulic Parameters AQUEOUS Environment QUATERNARY AQUIFER WEST ismailia Area EGYPT
下载PDF
Problems of drinking water treatment along Ismailia Canal Province, Egypt
2
作者 Mohamed H.GERIESH Klaus-Dieter BALKE Ahmed E.EL-RAYES 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第3期232-242,共11页
The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process.On the other hand,chlorine gas is added as a disinfectant agent in two steps,pr... The present drinking water purification system in Egypt uses surface water as a raw water supply without a preliminary filtration process.On the other hand,chlorine gas is added as a disinfectant agent in two steps,pre-and post-chlorination.Due to these reasons most of water treatment plants suffer low filtering effectiveness and produce the trihalomethane(THM) species as a chlorination by-product.The Ismailia Canal represents the most distal downstream of the main Nile River.Thus its water contains all the proceeded pollutants discharged into the Nile.In addition,the downstream reaches of the canal act as an agricultural drain during the closing period of the High Dam gates in January and February every year.Moreover,the wide industrial zone along the upstream course of the canal enriches the canal water with high concentrations of heavy metals.The obtained results indicate that the canal gains up to 24.06×106 m3 of water from the surrounding shallow aquifer during the closing period of the High Dam gates,while during the rest of the year,the canal acts as an influent stream losing about 99.6×106 m3 of its water budget.The reduction of total organic carbon(TOC) and suspended particulate matters(SPMs) should be one of the central goals of any treatment plan to avoid the disinfectants by-products.The combination of sedimentation basins,gravel pre-filtration and slow sand filtration,and underground passage with microbiological oxidation-reduction and adsorption criteria showed good removal of parasites and bacteria and complete elimination of TOC,SPM and heavy metals.Moreover,it reduces the use of disinfectants chemicals and lowers the treatment costs.However,this purification system under the arid climate prevailing in Egypt should be tested and modified prior to application. 展开更多
关键词 饮用水 环境保护 水处理技术 环境污染
下载PDF
Detection of Land-Use and Surface Temperature Change at Different Resolutions 被引量:2
3
作者 El-Sayed Ewis Omran 《Journal of Geographic Information System》 2012年第3期189-203,共15页
Understanding the relationship between land-use/land-cover change (LULCC) and environment is seriously important to manage arid land. However, information on how environmental factors influence the LULCC patterns at d... Understanding the relationship between land-use/land-cover change (LULCC) and environment is seriously important to manage arid land. However, information on how environmental factors influence the LULCC patterns at different scales in arid area is lacking. This paper investigates the application of RS/GIS for detecting LULCC and assessing its impact on surface temperature in the Ismailia Governorate, Egypt. Landsat images have been utilized to quantify the changes from 1984 to 2011. The images were pre-processed using calibration techniques and the geometric and atmos- pheric corrections were performed. Different ratios, indices, and optimized index factor were implemented to decide the best band combination. Supervised classification using Maximum Likelihood technique and spatial reclassification have been employed. Six land-use/land-cover categories (urban, vegetation, waterlogged 1 and 2, bare land, and water) were identified. The highest overall accuracy and Kappa coefficient is 93.04% and 80.65%, respectively. The integration of RS and GIS was further applied to examine the impact of land-use change on surface temperatures. The results revealed a notable land-use change in the study area. The Built-up area has rapidly increased in Ismailia during the 27 years pe- riod. The built-up area (37.65?C in 1984 and 43.876?C in 2011) and Barren land (37.34?C in 1984 and 42.801?C in 2011) exhibit the highest surface radiant temperature, while vegetated surfaces (28.73?C in 1984 and 32.96?C in 2011), water (25.94?C in 1984 and 27.32?C in 2011), waterlogged1 (34.54?C in 1984 and 35.60?C in 2011) recorded low radiant temperature respectively. Waterlogged2 is the class that shows an unexpected radiant temperature (26.38?C in 1984 and 27.75?C in 2011). The urban development between 1984 and 2011 has given rise to an average of 6.23?C in surface radiant temperature. During 27 years, the change rate of land-use types which are decreased are barren land (1.12% an- nually) and waterlogged1 and 2 (0.76 and 6.61% annually). The area of vegetation, water, and built-up are increased by 0.98%, 0.82%, and 0.61% per year, respectively. 展开更多
关键词 REMOTE SENSING GIS LANDSAT Image Land-Use Change DETECTION SURFACE Temperature ismailia
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部