Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first princ...Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first principle calculation,which features unique heterointerface and electronic coupling interaction via stacking assembly of exfoliated black phosphorus(EBP)and amine-functionalized EBP(N-EBP).Inspired by the theoretical results,we constructed the Iso-type heterostructure comprising of ultrathin exfoliated few-layered EBP and N-EBP,both of which were derived from identical bulk BP.The purposive amine-functionalization not only creates positively-charged P atoms on N-EBP as effective active sites via N-induced intramolecular electron transfer(IET)but also endows N-EBP with lower work function relative to EBP,while the unique EBP/N-EBP Iso-type heterostructure engenders directional heterointerfacial electron transfer(HET).The coupled IET/HET effects optimize the charge redistribution to afford favorable O_(2)adsorption.In this case,our unique strategy for the first time exploits the inherent catalytic capability of BP toward the oxygen reduction reaction(ORR)and enables the first use of BP as metal-free ORR catalysts for Zn-air cells.The newly-designed heterostructure facilitates a 4-e^(-)transfer ORR relative to inactive EBP or N-EBP.Importantly,the polymer-shielded heterostructure acts as efficient air electrodes to endow a primary Zn-air cell with high stability,large capacity and high energy density—superior to the commercial Pt/C-enabled cell.This study as the first report on metal-free BP-based ORR catalysts and air electrodes not only extends BP's application scopes but also renders new insight toward design of electronically-coupled superstructures for energy-related applications.展开更多
介绍了基于ISO/IEC14443 TYPE B协议的13.56MHz的RFID阅读器的设计。给出了设计的硬件电路和防冲撞算法的软件实现,最后给出了示波器测试的实验结果。本文所用的阅读器芯片为瑞士μEM公司生产的模拟前端集成电路芯片EM4094,微控制器使用...介绍了基于ISO/IEC14443 TYPE B协议的13.56MHz的RFID阅读器的设计。给出了设计的硬件电路和防冲撞算法的软件实现,最后给出了示波器测试的实验结果。本文所用的阅读器芯片为瑞士μEM公司生产的模拟前端集成电路芯片EM4094,微控制器使用了ARM7芯片LPC2104,防冲撞算法使用传统的基于ALOHA的算法。展开更多
基金financial support from the National Natural Science Foundation of China(Grant Nos.51973240,51833011 and 52003303)the China Postdoctoral Science Foundation(Grant Nos.2019M653176 and 2020M672932)+2 种基金the Guang-dong Provincial Basic and Applied Basic Research Fund Natural Science Foundation(Grant No.2020A1515111095)the Fundamental Research Funds for the Central Universities(Grant No.191-gpy117)the Guangdong YangFan Innovative&Entrepreneurial Research Team Program(Grant No.2016YT03C077)。
文摘Searching new structured black phosphorus(BP)and exploring intriguing functions and applications have become a hot topic so far.Here,we introduce a novel Iso-type black phosphorus heterostructure guided by first principle calculation,which features unique heterointerface and electronic coupling interaction via stacking assembly of exfoliated black phosphorus(EBP)and amine-functionalized EBP(N-EBP).Inspired by the theoretical results,we constructed the Iso-type heterostructure comprising of ultrathin exfoliated few-layered EBP and N-EBP,both of which were derived from identical bulk BP.The purposive amine-functionalization not only creates positively-charged P atoms on N-EBP as effective active sites via N-induced intramolecular electron transfer(IET)but also endows N-EBP with lower work function relative to EBP,while the unique EBP/N-EBP Iso-type heterostructure engenders directional heterointerfacial electron transfer(HET).The coupled IET/HET effects optimize the charge redistribution to afford favorable O_(2)adsorption.In this case,our unique strategy for the first time exploits the inherent catalytic capability of BP toward the oxygen reduction reaction(ORR)and enables the first use of BP as metal-free ORR catalysts for Zn-air cells.The newly-designed heterostructure facilitates a 4-e^(-)transfer ORR relative to inactive EBP or N-EBP.Importantly,the polymer-shielded heterostructure acts as efficient air electrodes to endow a primary Zn-air cell with high stability,large capacity and high energy density—superior to the commercial Pt/C-enabled cell.This study as the first report on metal-free BP-based ORR catalysts and air electrodes not only extends BP's application scopes but also renders new insight toward design of electronically-coupled superstructures for energy-related applications.
文摘介绍了基于ISO/IEC14443 TYPE B协议的13.56MHz的RFID阅读器的设计。给出了设计的硬件电路和防冲撞算法的软件实现,最后给出了示波器测试的实验结果。本文所用的阅读器芯片为瑞士μEM公司生产的模拟前端集成电路芯片EM4094,微控制器使用了ARM7芯片LPC2104,防冲撞算法使用传统的基于ALOHA的算法。