A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the ato...A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.展开更多
Optically active copolymers of pairs of three monomers, triphenyl (methyl methacrylate)and one or two pyridyl substituted methyl methacrylate homologues, were obtained by helix-sense-selective copolymerization using c...Optically active copolymers of pairs of three monomers, triphenyl (methyl methacrylate)and one or two pyridyl substituted methyl methacrylate homologues, were obtained by helix-sense-selective copolymerization using complexes of organolithium with chiral ligand as anionicinitiators in toluene at low temperature. The copolymers obtained with (-)-sparteine (Sp) and(S,S)-(+)-and (R, R)-(-)-2, 3-dimethoxy-1, 4-bis (dimethylamino) butanes((+)-and (-)-DDB) complexes of organolithium showed low optical activity, but PMP complex with N, N-diphenylethyleneamine monolithium amide (PMP-DPEDA-Li) was effective in synthesizingcopolymers of high optical rotation ([α]_D^(25) about+320~1370°)which were comparable to thoseof relative homopolymers with one-handed helical structure.展开更多
Silicone rubber films were modified by the consecutive grafting of 2-(diethylamino)ethyl methacrylate (DEAEMA) and N-vinylcaprolactam (NVCL) using direct method on two steps with gamma-rays. The effect of absorbed dos...Silicone rubber films were modified by the consecutive grafting of 2-(diethylamino)ethyl methacrylate (DEAEMA) and N-vinylcaprolactam (NVCL) using direct method on two steps with gamma-rays. The effect of absorbed dose and monomer concentration on grafting degree was determined. The grafted samples were verified by FTIR-ATR spectroscopy and swelling;thermal properties were analyzed by DSC and TGA. The stimuli-responsive behavior was studied by swelling and/or DSC. Thermo- and pH-sensitive films of (PP-g-DEAEMA)-g-NVCL presented a pH critical at 3.2 and LCST around 63.5℃.展开更多
Since tertiary amines (Cα-H) can be oxidized by peroxides and transition metal cations in high oxidation states into Ca2+ radicals to initiate vinylic polymerizations of methacrylates, Cu2+ and 2-(N,N-dimethylam...Since tertiary amines (Cα-H) can be oxidized by peroxides and transition metal cations in high oxidation states into Ca2+ radicals to initiate vinylic polymerizations of methacrylates, Cu2+ and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) form a polymerizable redox initiating pair, in which DMAEMA serves as an intrinsically reducing inimer. CuSOa-catalyzed aqueous self-initiated radical polymerizations of DMAEMA were successfully performed at ambient temperature via a continuous Cu2+-tertiary amine redox initiation based on catalyst regeneration in the presence of O2. The polymerization kinetics was monitored by gas chromatography and the structure of PDMAEMA was characterized by gel- permeation chromatography, nuclear magnetic resonance spectroscopy, laser light scattering and online intrinsic-viscosity analysis. Both the monomer conversion and the molecular weight of PDMAEMA increase with the reaction while the molecular weight distribution maintains rather broad, as the Cu2+-DMAEMA redox-initiation leads to linear PDMAEMA chains with terminal methacryloxyl moieties, and the Cu2+-PDMAEMA redox-initiation results in branched chains. The branched topology forms and develops only for the high-MW components of the PDMAEMA. Our results provide a facile strategy to prepare branched polymers from such commercially available intrinsically reducing inimers using a negligible concentration of regenerative air-stable catalysts.展开更多
Polypropylene microporous membranes are typical hydrophobic separation membranes, but the high hydrophobicity and lack of functionality easily cause bacterial adhesion, thus inducing membrane pollution. Poly(AMS-co-D...Polypropylene microporous membranes are typical hydrophobic separation membranes, but the high hydrophobicity and lack of functionality easily cause bacterial adhesion, thus inducing membrane pollution. Poly(AMS-co-DMAEMA) (PAD) was designed and synthesized by copolymerization of a-methyl styrene (AMS) and functional monomer 2-(dimethylamino)ethyl methacrylate (DMAEMA), and then grafted onto PP chains by melt blending. Microporous membranes of blended PP containing different contents of PAD are made by casting and stretching, and the polycation microporous membrane is then obtained via quaternization. The permeability and porosity of the microporous membrane achieve the best when the grafting efficiency reaches 42.16%, and the hydrophilicity of the microporous membrane is improved. The results show that the modified membranes fabricated in this method have good antibacterial properties.展开更多
文摘A kinetic model was developed to describe the atom transfer radical polymerization (ATRP) of 2(N,N-dimethylarnino) ethyl methacrylate (DMAEMA). The model was based on a polymerization mechanism, which included the atom transfer equilibrium for primary radical, the propagation of growing polymer radical, and the atom transfer equilibrium for the growing polymer radical. An experiment was carried out to measure the conversion of monomer, the number-average molecular weight of polymer and molecular weight distribution for the ATRP process of DMAEMA. The experimental data were used to correlate the kinetic model and rate constants were obtained. The rate constants of activation and deactivation in the atom transfer equilibrium for primary radical are 1.0 x 10(4) L(.)mol(-1.)s(-1) and 0.04 L(.)mol(-1.)s(-1), respectively. The rate constant of the propagation of growing polymer radical is 8.50 L(.)mol(-1.)s(-1), and the rate constants of activation and deactivation in the atom transfer equilibrium for growing polymer radical are 0.045 L(.)mol(-1.)s(-1) and 1.2 x 10(5) L(.)mol(-1.)s(-1), respectively. The values of the rate constants represent the features of the ATRP process. The kinetic model was used to calculate the ATRP process of DMAEMA. The results show that the calculations agree well with the measurements.
基金This project is supported by the National Natural Science Foundation of China and the President Foundation of Academia Sinica
文摘Optically active copolymers of pairs of three monomers, triphenyl (methyl methacrylate)and one or two pyridyl substituted methyl methacrylate homologues, were obtained by helix-sense-selective copolymerization using complexes of organolithium with chiral ligand as anionicinitiators in toluene at low temperature. The copolymers obtained with (-)-sparteine (Sp) and(S,S)-(+)-and (R, R)-(-)-2, 3-dimethoxy-1, 4-bis (dimethylamino) butanes((+)-and (-)-DDB) complexes of organolithium showed low optical activity, but PMP complex with N, N-diphenylethyleneamine monolithium amide (PMP-DPEDA-Li) was effective in synthesizingcopolymers of high optical rotation ([α]_D^(25) about+320~1370°)which were comparable to thoseof relative homopolymers with one-handed helical structure.
文摘Silicone rubber films were modified by the consecutive grafting of 2-(diethylamino)ethyl methacrylate (DEAEMA) and N-vinylcaprolactam (NVCL) using direct method on two steps with gamma-rays. The effect of absorbed dose and monomer concentration on grafting degree was determined. The grafted samples were verified by FTIR-ATR spectroscopy and swelling;thermal properties were analyzed by DSC and TGA. The stimuli-responsive behavior was studied by swelling and/or DSC. Thermo- and pH-sensitive films of (PP-g-DEAEMA)-g-NVCL presented a pH critical at 3.2 and LCST around 63.5℃.
基金financially supported by the National Natural Science Foundation of China(No.20674033)Natural Science Foundation of Jiangsu Province(No.BK2008142)Scientific Research Foundation for the Returned Overseas Chinese Scholars(State Education Ministry)
文摘Since tertiary amines (Cα-H) can be oxidized by peroxides and transition metal cations in high oxidation states into Ca2+ radicals to initiate vinylic polymerizations of methacrylates, Cu2+ and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA) form a polymerizable redox initiating pair, in which DMAEMA serves as an intrinsically reducing inimer. CuSOa-catalyzed aqueous self-initiated radical polymerizations of DMAEMA were successfully performed at ambient temperature via a continuous Cu2+-tertiary amine redox initiation based on catalyst regeneration in the presence of O2. The polymerization kinetics was monitored by gas chromatography and the structure of PDMAEMA was characterized by gel- permeation chromatography, nuclear magnetic resonance spectroscopy, laser light scattering and online intrinsic-viscosity analysis. Both the monomer conversion and the molecular weight of PDMAEMA increase with the reaction while the molecular weight distribution maintains rather broad, as the Cu2+-DMAEMA redox-initiation leads to linear PDMAEMA chains with terminal methacryloxyl moieties, and the Cu2+-PDMAEMA redox-initiation results in branched chains. The branched topology forms and develops only for the high-MW components of the PDMAEMA. Our results provide a facile strategy to prepare branched polymers from such commercially available intrinsically reducing inimers using a negligible concentration of regenerative air-stable catalysts.
基金supported by the National Natural Science Foundation of China(Nos. 21778055 and 21573250)
文摘Polypropylene microporous membranes are typical hydrophobic separation membranes, but the high hydrophobicity and lack of functionality easily cause bacterial adhesion, thus inducing membrane pollution. Poly(AMS-co-DMAEMA) (PAD) was designed and synthesized by copolymerization of a-methyl styrene (AMS) and functional monomer 2-(dimethylamino)ethyl methacrylate (DMAEMA), and then grafted onto PP chains by melt blending. Microporous membranes of blended PP containing different contents of PAD are made by casting and stretching, and the polycation microporous membrane is then obtained via quaternization. The permeability and porosity of the microporous membrane achieve the best when the grafting efficiency reaches 42.16%, and the hydrophilicity of the microporous membrane is improved. The results show that the modified membranes fabricated in this method have good antibacterial properties.