A novel simple but effective initiating system of H2O/AlCl3/veratrole (VE) has been developed to synthesize high molecular weight polyisobutylene (PIB) at elevated temperatures via cationic polymerization of isobu...A novel simple but effective initiating system of H2O/AlCl3/veratrole (VE) has been developed to synthesize high molecular weight polyisobutylene (PIB) at elevated temperatures via cationic polymerization of isobutylene (IB) in solvent mixture of hexane/methylene dichloride (n-Hex/CH2Cl2 = 2/1, V/V). VE played very important roles in decreasing cationicity of the growing chain ends, suppressing side reactions of chain transfer and termination during polymerization, leading to production of high molecular weight PIBs. PIBs with high yields, having very high weight-average molecular weight (Mw) of 1117000 and 370000 g/tool could be synthesized with H2O/AICl3/VE initiating system at VE concentration of 5.4 mmol/L at -80 and -60 ℃ respectively. Molecular weight of PIB increased remarkably with increasing VE concentration. The reaction order with respect to VE concentration was determined to be -3.52 via FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe. The negative reaction order of VE was consistent with its retarding effect on IB polymerization by interacting with the propagating species. Molecular weight of PIB decreased with increasing polymerization temperature. The activation energy for polymerization degree (Eop) could be determined to be around -23 kJ/mol when VE concentration was 5.4 mmol/L or 6.4 mmol/L.展开更多
The cationic polymerizations of isobutylene (IB) coinitiated by AlCl3 were carried out in solvent mixture of nhexane/methylene dichloride (n-hex/CH2Cl2) of 60/40 V/V in the presence of ethyl benzoate (EB) at var...The cationic polymerizations of isobutylene (IB) coinitiated by AlCl3 were carried out in solvent mixture of nhexane/methylene dichloride (n-hex/CH2Cl2) of 60/40 V/V in the presence of ethyl benzoate (EB) at various temperatures range from -80℃ to -30℃. The effects of EB concentration ([EB]) and polymerization temperature on monomer conversion, weight-average molecular weight (Mw) and molecular weight distribution (MWD, Mw/Mn) of polyisobutylene (PIB) products were investigated. The rate of polymerization decreased while Mw of PIB products increased with increasing [EB]. The polymers with high molecular weight could be prepared in the presence of a suitable amount of EB. Significantly, the polymers with high Mw of 80.2 × 10^4 and 65.4 × 10^4 could be produced at -80℃ and -70℃ at [EB] = 0.24 × 10^3 mol/L respectively, which were much higher than that (Mw = 57.9 × 10^4) of PIB prepared at -100℃ in the absence ofEB. A simple but effective method for preparing the high molecular weight polyisobutylenes was developed in this work. It has been also found that the activation energy for propagation (Ep) depended on the polymerization temperature range in the presence of EB. An obvious inflection of the linear plots of lnXn versus 1/Tp occurred at the temperature range from -60℃ to -50℃ at four different concentrations of EB from 0.19 × 10^3 mol/L to 0.33× 10^3 tool/L, and thus the inflection temperature (Tinf) was in the range of -60℃ to -50℃. When [EB] was in the range of 0.24 × 10^3 mol/L to 0.33× 10^3 mol/L, Ep was determined to be around -12 kJ/mol when the polymerization was carried out at temperatures from -80℃ to Tinf and to be around -28 kJ/mol at temperatures from Tinf to -15℃ respectively.展开更多
The selective cationic polymerization of isobutylene (IB) initiated by a BF3-cyclohexanol (CL) complex was carried out from the mixed Ca fraction feed containing the 4C saturated and unsaturated hydrocarbons at -2...The selective cationic polymerization of isobutylene (IB) initiated by a BF3-cyclohexanol (CL) complex was carried out from the mixed Ca fraction feed containing the 4C saturated and unsaturated hydrocarbons at -20℃. The effects of CL concentration, BF3 concentration, solvent for preparing BF3·CL complex and polymerization time on the chemical structure of end groups, number-average molecular weight (Mn) and molecular weight distribution (MWD, Mw/Mn) of the resulting polymers were investigated. The experimental results indicate that the BF3·CL complex initiating system exhibited an extremely high selectivity toward the cationic polymerization of IB in the mixed C4 fraction feed and low molecular weight (Mn = 900-3600) polyisobutylenes (PIBs) with large proportion of exo-double bond end groups were obtained. The exo-double bond content in PIB chain ends increased by increasing CL concentration or by decreasing solvent polarity in initiating system, BF3 concentration and polymerization time. The M, and MWD of the resulting PIBs were dependent on the concentrations of CL and BF3. Highly reactive PIBs with around 90 mol% of exo-double bonds were successfully synthesized by the selective polymerization of IB from the mixed Ca fraction feed, providing a potentially practical process for its simplicity and low costs.展开更多
The cationic polymerization of C4 mixed feed and isobutylene co-initiated by AlCl3xOiPr2,iBuAlC12xnOiPr2, and [emim]Cl- FeCl3xnOiPr2 ([emim]Cl: 1 -ethyl-3-methylimidazolium chloride) has been investigated. AlCl3xOiPr2...The cationic polymerization of C4 mixed feed and isobutylene co-initiated by AlCl3xOiPr2,iBuAlC12xnOiPr2, and [emim]Cl- FeCl3xnOiPr2 ([emim]Cl: 1 -ethyl-3-methylimidazolium chloride) has been investigated. AlCl3xOiPr2 co-initiated cationic polymerization of C4 mixed feed proceeds at a lower rate than polymerization of isobutylene affording polymers with higher molecular weight. Complexes of iBuAlCh with di isopropyl ether of different compositions are more suitable co-initiators than AlCl3xOiPr2 for the synthesis of highly reactive polyisobutylene (HR PIB) from C4 mixed feed due to their higher activity in the polymerization as well as possibility to prepare polyisobutylenes with lower molecular weight and higher content of exo-olefin end groups. However, iBuA1C12 needs activating via addition of external water (initiator) and/or interaction with salts hydrates in order to increase the reaction rate and the saturated monomer conversion.[Emim]Cl-FeC13/iPr2O is a quite promising catalyst for the preparation of HR PIB with high exo-olefin end group content (> 80%) and relatively low polydispersity (Mw/Mn < 2.8) via cationic polymerization of C4 mixed feed. The sonication of reaction mixture in case of using [emim]Cl-FeCh allowed increasing the reaction rate and decreasing the molecular weight.展开更多
The random copolymers of isobutylene (IB) with polar comonomers of 4-acetoxystyrene (ACS) or 4-tert-butoxystyrene (TBO), P(IB-co-ACS) and P(IB-co-TBO), could be successfully synthesized via cationic copolymerization w...The random copolymers of isobutylene (IB) with polar comonomers of 4-acetoxystyrene (ACS) or 4-tert-butoxystyrene (TBO), P(IB-co-ACS) and P(IB-co-TBO), could be successfully synthesized via cationic copolymerization with FeCh-based initiating system. The kinetics of the cationic copolymerization process was in situ investigated by inserting a diamond probe into the reaction system by ATR-FTIR spectroscopy. The chemical structure and incorporation content of polar comonomers in the copolymers were characterized by GPC with RI/UV dual detectors and 1H-NMR spectroscopy. The corresponding functionalized random copolymers of IB with vinyl phenol P(IB-co-POH) carrying phenolic hydroxyl side groups could be further prepared via the complete hydrolysis of acetoxyl side groups in P(IB-co-ACS) or tert-butoxyl side groups in P(IB-co-TBO) copolymers. The functionalized P(IB-co-POH) copolymers became hydrophilic with water contact angle (WCA) of ca. 80° for the self-assembly in hot water, compared to the hydrophobic polyisobutylene with WCA of ca. 110°. The functionalized P(IB-co-POH) copolymers also displayed an excellent self-healing property due to the interaction of intermolecular hydrogen bonding and formation of three dimentional supramolecular networks from phenolic hydroxyl side groups. Furthermore, P(IB-co-POH) copolymers also provided a good matrix for the homogeneous dispersion for silica nanoparticles due to the formation of hydrogen bonding between copolymer chains and silica nanoparticles.展开更多
基金financially supported by the National Natural Science Foundation of China(No.20934001)
文摘A novel simple but effective initiating system of H2O/AlCl3/veratrole (VE) has been developed to synthesize high molecular weight polyisobutylene (PIB) at elevated temperatures via cationic polymerization of isobutylene (IB) in solvent mixture of hexane/methylene dichloride (n-Hex/CH2Cl2 = 2/1, V/V). VE played very important roles in decreasing cationicity of the growing chain ends, suppressing side reactions of chain transfer and termination during polymerization, leading to production of high molecular weight PIBs. PIBs with high yields, having very high weight-average molecular weight (Mw) of 1117000 and 370000 g/tool could be synthesized with H2O/AICl3/VE initiating system at VE concentration of 5.4 mmol/L at -80 and -60 ℃ respectively. Molecular weight of PIB increased remarkably with increasing VE concentration. The reaction order with respect to VE concentration was determined to be -3.52 via FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe. The negative reaction order of VE was consistent with its retarding effect on IB polymerization by interacting with the propagating species. Molecular weight of PIB decreased with increasing polymerization temperature. The activation energy for polymerization degree (Eop) could be determined to be around -23 kJ/mol when VE concentration was 5.4 mmol/L or 6.4 mmol/L.
基金supported by the National Natural Science Foundation of China(Nos.20774008,20934001) and SINOPEC
文摘The cationic polymerizations of isobutylene (IB) coinitiated by AlCl3 were carried out in solvent mixture of nhexane/methylene dichloride (n-hex/CH2Cl2) of 60/40 V/V in the presence of ethyl benzoate (EB) at various temperatures range from -80℃ to -30℃. The effects of EB concentration ([EB]) and polymerization temperature on monomer conversion, weight-average molecular weight (Mw) and molecular weight distribution (MWD, Mw/Mn) of polyisobutylene (PIB) products were investigated. The rate of polymerization decreased while Mw of PIB products increased with increasing [EB]. The polymers with high molecular weight could be prepared in the presence of a suitable amount of EB. Significantly, the polymers with high Mw of 80.2 × 10^4 and 65.4 × 10^4 could be produced at -80℃ and -70℃ at [EB] = 0.24 × 10^3 mol/L respectively, which were much higher than that (Mw = 57.9 × 10^4) of PIB prepared at -100℃ in the absence ofEB. A simple but effective method for preparing the high molecular weight polyisobutylenes was developed in this work. It has been also found that the activation energy for propagation (Ep) depended on the polymerization temperature range in the presence of EB. An obvious inflection of the linear plots of lnXn versus 1/Tp occurred at the temperature range from -60℃ to -50℃ at four different concentrations of EB from 0.19 × 10^3 mol/L to 0.33× 10^3 tool/L, and thus the inflection temperature (Tinf) was in the range of -60℃ to -50℃. When [EB] was in the range of 0.24 × 10^3 mol/L to 0.33× 10^3 mol/L, Ep was determined to be around -12 kJ/mol when the polymerization was carried out at temperatures from -80℃ to Tinf and to be around -28 kJ/mol at temperatures from Tinf to -15℃ respectively.
基金supported by the National Natural Science Foundation of China(Nos.20774008 and 20934001)Program for Changjiang Scholars and Innovative Research Teams in Universities(IRT 0706)
文摘The selective cationic polymerization of isobutylene (IB) initiated by a BF3-cyclohexanol (CL) complex was carried out from the mixed Ca fraction feed containing the 4C saturated and unsaturated hydrocarbons at -20℃. The effects of CL concentration, BF3 concentration, solvent for preparing BF3·CL complex and polymerization time on the chemical structure of end groups, number-average molecular weight (Mn) and molecular weight distribution (MWD, Mw/Mn) of the resulting polymers were investigated. The experimental results indicate that the BF3·CL complex initiating system exhibited an extremely high selectivity toward the cationic polymerization of IB in the mixed C4 fraction feed and low molecular weight (Mn = 900-3600) polyisobutylenes (PIBs) with large proportion of exo-double bond end groups were obtained. The exo-double bond content in PIB chain ends increased by increasing CL concentration or by decreasing solvent polarity in initiating system, BF3 concentration and polymerization time. The M, and MWD of the resulting PIBs were dependent on the concentrations of CL and BF3. Highly reactive PIBs with around 90 mol% of exo-double bonds were successfully synthesized by the selective polymerization of IB from the mixed Ca fraction feed, providing a potentially practical process for its simplicity and low costs.
文摘The cationic polymerization of C4 mixed feed and isobutylene co-initiated by AlCl3xOiPr2,iBuAlC12xnOiPr2, and [emim]Cl- FeCl3xnOiPr2 ([emim]Cl: 1 -ethyl-3-methylimidazolium chloride) has been investigated. AlCl3xOiPr2 co-initiated cationic polymerization of C4 mixed feed proceeds at a lower rate than polymerization of isobutylene affording polymers with higher molecular weight. Complexes of iBuAlCh with di isopropyl ether of different compositions are more suitable co-initiators than AlCl3xOiPr2 for the synthesis of highly reactive polyisobutylene (HR PIB) from C4 mixed feed due to their higher activity in the polymerization as well as possibility to prepare polyisobutylenes with lower molecular weight and higher content of exo-olefin end groups. However, iBuA1C12 needs activating via addition of external water (initiator) and/or interaction with salts hydrates in order to increase the reaction rate and the saturated monomer conversion.[Emim]Cl-FeC13/iPr2O is a quite promising catalyst for the preparation of HR PIB with high exo-olefin end group content (> 80%) and relatively low polydispersity (Mw/Mn < 2.8) via cationic polymerization of C4 mixed feed. The sonication of reaction mixture in case of using [emim]Cl-FeCh allowed increasing the reaction rate and decreasing the molecular weight.
基金financially supported by the National Natural Science Foundation of China (Nos. 21574007 and 51521062)the Fundamental Research Funds for the Central Universities (No. XK1802-2)
文摘The random copolymers of isobutylene (IB) with polar comonomers of 4-acetoxystyrene (ACS) or 4-tert-butoxystyrene (TBO), P(IB-co-ACS) and P(IB-co-TBO), could be successfully synthesized via cationic copolymerization with FeCh-based initiating system. The kinetics of the cationic copolymerization process was in situ investigated by inserting a diamond probe into the reaction system by ATR-FTIR spectroscopy. The chemical structure and incorporation content of polar comonomers in the copolymers were characterized by GPC with RI/UV dual detectors and 1H-NMR spectroscopy. The corresponding functionalized random copolymers of IB with vinyl phenol P(IB-co-POH) carrying phenolic hydroxyl side groups could be further prepared via the complete hydrolysis of acetoxyl side groups in P(IB-co-ACS) or tert-butoxyl side groups in P(IB-co-TBO) copolymers. The functionalized P(IB-co-POH) copolymers became hydrophilic with water contact angle (WCA) of ca. 80° for the self-assembly in hot water, compared to the hydrophobic polyisobutylene with WCA of ca. 110°. The functionalized P(IB-co-POH) copolymers also displayed an excellent self-healing property due to the interaction of intermolecular hydrogen bonding and formation of three dimentional supramolecular networks from phenolic hydroxyl side groups. Furthermore, P(IB-co-POH) copolymers also provided a good matrix for the homogeneous dispersion for silica nanoparticles due to the formation of hydrogen bonding between copolymer chains and silica nanoparticles.