A remote-control tether-less isolation tool is a mechanical device that is normally used in pipelines to block the flow at a given position by transforming a blocking module. In this study, the interactions between th...A remote-control tether-less isolation tool is a mechanical device that is normally used in pipelines to block the flow at a given position by transforming a blocking module. In this study, the interactions between the fluid and the plug module of the isolation tool were investigated. Simulations of the plug process and particle image velocimetry measurements were performed to study the flow characteristics. Numerical solutions for the continuity, momentum, and energy equations were obtained by using commercial software based on finite-volume techniques. Box–Behnken design was applied, and response surface methodology(RSM)-based CFD simulation analysis was conducted. The dynamic model in the plug process was built by RSM and used to evaluate the influences of the main mechanical parameters on the pressure during the plug process. The diameter of the isolation tool and the diameter of the plug module have strong influences on the process, and the length of the isolation tool has only a little influence on the plug process.展开更多
During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce ...During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51575528)the Scientific Research Foundation of the Education Ministry for Returned Chinese Scholars (China)+1 种基金the State Key Laboratory for Coal Resources and Safe Mining, China University of Mining and Technology (No. SKLCRSM10KFB04)the Science Foundation of China University of Petroleum, Beijing (No. YXQN-2014-02)
文摘A remote-control tether-less isolation tool is a mechanical device that is normally used in pipelines to block the flow at a given position by transforming a blocking module. In this study, the interactions between the fluid and the plug module of the isolation tool were investigated. Simulations of the plug process and particle image velocimetry measurements were performed to study the flow characteristics. Numerical solutions for the continuity, momentum, and energy equations were obtained by using commercial software based on finite-volume techniques. Box–Behnken design was applied, and response surface methodology(RSM)-based CFD simulation analysis was conducted. The dynamic model in the plug process was built by RSM and used to evaluate the influences of the main mechanical parameters on the pressure during the plug process. The diameter of the isolation tool and the diameter of the plug module have strong influences on the process, and the length of the isolation tool has only a little influence on the plug process.
基金financially supported by the National Natural Science Foundation of China(Grant No.51575528)。
文摘During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology.