期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Microstructure and Gd-rich phase evolution of as-cast AZ31-xGd magnesium alloys during semi-solid isothermal heat treatment 被引量:10
1
作者 CHU Chen-liang WU Xiao-quan +5 位作者 QIU Shui-cai TANG Bin-bing YIN Zheng YAN Hong LUO Chao HU Zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期1-15,共15页
The microstructure and Gd-rich phase evolution of as-cast AZ31-xGd(x=0,1.5 wt.%,2.0 wt.%and 2.5 wt.%)magnesium alloys during semi-solid isothermal heat treatment were investigated deeply in the present work.Results sh... The microstructure and Gd-rich phase evolution of as-cast AZ31-xGd(x=0,1.5 wt.%,2.0 wt.%and 2.5 wt.%)magnesium alloys during semi-solid isothermal heat treatment were investigated deeply in the present work.Results showed that the lamellar(Mg,Al)3Gd phases transformed into the particle-like Al2Gd phases in AZ31 magnesium alloys with Gd addition during semi-solid isothermal heat treatment,leading to yielding more sphericalα-Mg grains.When Gd content is 2.0 wt.%,the size of semi-solid spherical grains reaches the minimum.The main mechanism of grain refinement lies in the remelting of dendritic branches as well as the auxiliary effect of a small number of Al2Gd particles as grain refining inoculants.Meanwhile,Al2Gd particles enriched at the solid-liquid interfaces can remarkably retard the growth rate ofα-Mg grains.A reduction of deformation resistance has been successfully achieved in AZ31-2.0Gd magnesium alloy after semi-solid isothermal heat treatment,which shows a moderate compressive deformation resistance(230 MPa),comparing to the as-cast AZ31 magnesium alloy(280 MPa)and semi-solid AZ31 magnesium alloy(209 MPa). 展开更多
关键词 MAGNESIUM MICROSTRUCTURE rare earth element Al2Gd particle semi-solid isothermal heat treatment
下载PDF
Effect of isothermal heat treatment on semi-solid microstructure of AZ91D magnesium alloy containing rare earth Gd 被引量:10
2
作者 Yong Hu Li Rao Xu-wu Ni 《China Foundry》 SCIE CAS 2015年第1期20-25,共6页
The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-soli... The AZ91 D magnesium alloy containing rare earth Gd was prepared in this study, and the effect of semi-solid isothermal heat treatment on the microstructure of the alloy was investigated to obtain an optimum semi-solid structure. Results show that Gd can refine the microstructure of AZ91 D magnesium alloy, and the optimum semi-solid AZ91 D microstructure can be achieved by adding 1.5wt.% Gd. After treated at 585 °C for 30 min, the well distributed rose-shaped and near-spherical semi-solid microstructures of AZ91D+1.5wt.%Gd alloy can be obtained. The liquid phase of the semi-solid alloy consists of three components, namely, the molten pool, the "entrapped liquid" pool and the liner liquid film which separates two neighbor particles. The solid phase is composed of two phases, the primary α-Mg particles and the α-Mg phase formed in the second stage of solidification. With the increase of holding time, melting which causes the decrease of the primary α-Mg particle size is the dominant mechanism in the initial stage while coalescence and Ostwald ripening tend to be the principles later. 展开更多
关键词 isothermal heat treatment semi-solid processing AZ91D GADOLINIUM
下载PDF
Microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment 被引量:8
3
作者 Guohua Wu Yang Zhang +1 位作者 Wencai Liu Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS 2013年第1期39-46,共8页
In this study,the microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment has been investigated.The results show that primary particles coarsen continuously during the holding.Co... In this study,the microstructure evolution of semi-solid Mg-10Gd-3Y-0.5Zr alloy during isothermal heat treatment has been investigated.The results show that primary particles coarsen continuously during the holding.Coarsening rate decreases with the increase of isothermal temperature.When isothermal temperature increases from 600℃ to 620℃,the dominant mechanism for coarsening changes from particle coalescence to Ostwald ripening.Equiaxed as-cast microstructure is beneficial to the semi-solid microstructure after isothermal heat treatment,which brings about the refinement and spheroidization of primary particles,and shortening of holding time.Significant modification of second phases can also be achieved after isothermal heat treatment,due to its unique solidification process.The optimum processing parameters for Mg-10Gd-3Y-0.5Zr alloy in isothermal heat treatment are isothermal temperature of 610℃-620℃ and holding time of 20-40 min. 展开更多
关键词 Mg-10Gd-3Y-0.5Zr Semi-solid forming isothermal heat treatment MICROSTRUCTURE
下载PDF
Microstructure evolution of semi-solid Mg-14Al-0.5Mn alloys during isothermal heat treatment 被引量:4
4
作者 张亮 曹占义 刘勇兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第7期1244-1248,共5页
A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal he... A new Mg-14Al-0.5Mn alloy that exhibits a wide solidification range and sufficient fluidity for semi-solid forming was designed. And the rnicrostructure evolution of semi-solid Mg-14Al-0.5Mn alloy during isothermal heat treatment was investigated. The mechanism of the microstructure evolution and the processing conditions for isothermal heat treatment were also discussed. The results show that the microstructures of cast alloys consist of α-Mg,β-Mg17Al12 and a small amount of Al-Mn compounds. After holding at 520 ℃ for 3 min, the phases of β-Mg17Al12 and eutectic mixtures in the Mg-14Al-0.5Mn alloy melt and the microstructures of α-Mg change from developed dendrites to irregular solid particles. With increasing the isothermal time, the amount of liquid increases, and the solid particles grow large and become spherical. When the holding time lasts for 20 min or even longer, the solid and liquid phases achieve a state of dynamic equilibrium. 展开更多
关键词 Mg-14Al-0.5Mn SEMI-SOLID isothermal heat treatment microstructure evolution
下载PDF
Effect of holding time on microstructure of Mg-9Al-1Si alloy during semisolid isothermal heat treatment 被引量:3
5
作者 马国睿 李新林 李庆芬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期430-434,共5页
The effects of isothermal holding time on the semisolid microstructure of Mg-9Al-1Si(mass fraction,%)alloy were investigated.The research results indicate that the Mg-9Al-1Si alloy with non-dendritic microstructure ca... The effects of isothermal holding time on the semisolid microstructure of Mg-9Al-1Si(mass fraction,%)alloy were investigated.The research results indicate that the Mg-9Al-1Si alloy with non-dendritic microstructure can be produced by the semi-solid isothermal heat treatment.With holding time varying from 5 to 30 min,the volume fraction of liquid is gradually enlarged from 29.3%to 38.6%,the morphology ofα-Mg grains changes from initial dendritic shape to spherical types and their average sizes increases from 41.1 to 56.1μm.In addition,during the isothermal heat treatment,the eutectic Mg2Si phase changes from the initial Chinese script shape to granule and/or polygon shape in Mg-9Al-1Si alloy.The modification of Mg2Si phase is possibly attributed to a shift of the eutectic composition of the liquid in semi-solid slurries,towards lower silicon contents with increasing Al content due to a redistribution of Al during isothermal heat treatment. 展开更多
关键词 SEMI-SOLID isothermal heat treatment Mg2Si phase MODIFICATION
下载PDF
Microstructural evolution of equal channel angular pressed AZ91D magnesium alloy during semi-solid isothermal heat treatment 被引量:2
6
作者 Chen Tijun Lu Guoxiang Hao Yuan 《China Foundry》 SCIE CAS 2008年第4期234-239,共6页
The microstructural evolution of AZ91D magnesium alloy processed by equal channel angular pressing during isothermal heat treatment at 570℃was investigated.The results indicated that the equal channel angular pressin... The microstructural evolution of AZ91D magnesium alloy processed by equal channel angular pressing during isothermal heat treatment at 570℃was investigated.The results indicated that the equal channel angular pressing followed by semi-solid isothermal heat treatment was an effective method to prepare semi-solid nondendritic slurry of AZ91D magnesium alloy.During this process,its microstructure change underwent four stages,the initial coarsening stage,the structure separation stage,the spheroidization stage and the final coarsening stage.The microstructural spheroidization effect was the best after being heated for 15 min for the alloy pressed for four passes,and the grain size was the smallest.With the further increase of heating time,the grain size and shape factor increased.When the heating time was kept constant,the grain size and shape factor decreased with the increase of pressing passes. 展开更多
关键词 AZ91D magnesium alloy semi-solid isothermal heat treatment MICROSTRUCTURE semi-solid forming
下载PDF
Effects of Sm addition on microstructural evolution of Mg-6Zn-0.4Zr alloy during semi-solid isothermal heat treatment 被引量:6
7
作者 Yu Zhang Xiao-feng Huang +2 位作者 Ying Ma Ti-jun Chen Yuan Hao 《China Foundry》 SCIE 2017年第2期85-92,共8页
The application of segmental semi-solid thixoforming of magnesium alloys is confined due to the dimensional distinction existing in solid particles of the alloy billet from edge to center zones. In the present study, ... The application of segmental semi-solid thixoforming of magnesium alloys is confined due to the dimensional distinction existing in solid particles of the alloy billet from edge to center zones. In the present study, the effects of Sm addition on the microstructural evolution of Mg-6Zn-0.4Zr and Mg-6Zn-4Sm-0.4Zr alloys by semi-solid isothermal heat treatment were investigated, to obtain optimum semi-solid microstructures for the subsequently thixoforming. The results indicate that the grains of the Sm-bearing alloy are evidently refined and gradually evolve from dendritic to globular and elliptic particles. In addition, the distinctly dimensional effect of the Mg-6Zn-0.4Zr alloy is eliminated with 4% Sm addition; the particle sizes in all zones from center to the edge of the billet are almost identical. With the increment of isothermal heat treatment temperature, the dendritic microstructures completely disappear, and meanwhile, the irregular and globular particles gradually form. The size, morphology and the distribution of solid particles mainly depend on the formation and permeation of the liquid phase in the process of isothermal heat treatment. As the isothermal temperature increases from 570 °C to 610 °C, the average size and shape factor of solid particles of both the alloys with and without Sm addition gradually decrease while the liquid fraction gradually increases. 展开更多
关键词 Mg-Zn-Zr magnesium alloy dimensional effect Sm semi-solid isothermal heat treatment non-dendritic microstructure
下载PDF
Investigation on microstructures and properties of semi-solid Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5)light-weight high-entropy alloy during isothermal heat treatment process 被引量:1
8
作者 Yong Hu Yuan-yuan Liu +3 位作者 Long-zhi Zhao Yan-chuan Tang Hai-tao Jiao De-jia Liu 《China Foundry》 SCIE CAS 2022年第6期519-527,共9页
The Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5)light-weight high-entropy alloy with globular microstructure was fabricated by isothermal heat treatment.The effects of isothermal temperatures and holding times on the semi-solid mi... The Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5)light-weight high-entropy alloy with globular microstructure was fabricated by isothermal heat treatment.The effects of isothermal temperatures and holding times on the semi-solid microstructure evolution were investigated.The results indicate that,with increase of the isothermal temperature,the average grain size increases and the spheroidization time shortens.With prolongation of holding time,the shape factor increases firstly and then decreases,and the average grain size decreases at first and then increases when the isothermal temperature is below 520°C,however it increases gradually at 540℃.The optimal semi-solid microstructure is obtained at 520℃ for 30 min,whose shape factor and average grain size are 0.90 and 56.4μm,respectively.Compared with as-cast Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy,the compressive strength and plasticity of semi-solid Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy are increased by 36%and 108%,respectively.The formation of semi-solid microstructures includes three stages:melting separation,spheroidization,and coarsening growth.The sluggish diffusion effect of Al_(80)Mg_(5)Li_(5)Zn_(5)Cu_(5) light-weight high-entropy alloy leads to a low coarsening rate,resulting in slow grain growth. 展开更多
关键词 light-weight high-entropy alloy SEMI-SOLID isothermal heat treatment microstructure
下载PDF
Grain growth of Al-4Cu-Mg alloy during isothermal heat treatment 被引量:1
9
作者 Haitao Jiang Miaoquan Li 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期67-72,共6页
The microstructure of an Al-4Cu-Mg alloy during isothermal heat treatment in the Strain Induced Melt Activation (SIMA) process was investigated and the kinetics of grain growth was analyzed, The grain growth during ... The microstructure of an Al-4Cu-Mg alloy during isothermal heat treatment in the Strain Induced Melt Activation (SIMA) process was investigated and the kinetics of grain growth was analyzed, The grain growth during isothermal heat treatment of the Al-4Cu-Mg alloy coincided with the Ostwald ripening theory. During isothermal heat treatment, both grain shape and the high volume fraction of solid phase have significant effects on grain growth. Therefore, a new grain growth model based on the Ostwald ripening theory was proposed taking into consideration the grain shape and the volume fraction of solid phase. By comparing the calculated results with the experimental results, it was confirmed that the present model could be applied to grain growth during isothermal heat treatment of the Al-4Cu-Mg alloy in the SIMA process. 展开更多
关键词 grain growth SEMI-SOLID isothermal heat treatment Al-4Cu-Mg alloy
下载PDF
Direct preparation of semi-solid billets by the semi-solid isothermal heat treatment for commercial cold-rolled ZL104 aluminum alloy
10
作者 Yong-fei Wang Yi Guo +1 位作者 Sheng-dun Zhao Xiao-guang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第7期1164-1173,共10页
Semi-solid isothermal heat treatment was proposed to directly process cold-rolled ZL104 aluminum alloys and obtain semi-solid bil-lets.The effects of two process parameters,namely,temperature and processing time,on th... Semi-solid isothermal heat treatment was proposed to directly process cold-rolled ZL104 aluminum alloys and obtain semi-solid bil-lets.The effects of two process parameters,namely,temperature and processing time,on the microstructure and hardness of the resulting bil-lets were also experimentally examined.Average grain size(AGS)increased and the shape factor(SF)of the grain improved as the process temperature increased.The SF of the grain also increased with increasing processing time,and the AGS was augmented when the processing time was prolonged from 5 to 20 min at 570℃.The hardness of the aluminum alloy decreased because of the increase in AGS with increasing temperature and processing time.The optimal temperature and time for the preparation of semi-solid ZL104 aluminum alloys were 570℃and 5 min,respectively.Under optimal process parameters,the AGS,SF,and hardness of the resulting alloy were 35.88μm,0.81,and 55.24 MPa,respectively.The Lifshitz-Slyozov-Wagner relationship was analyzed to determine the coarsening rate constant at 570℃,and a rate constant of 1357.2μm3/s was obtained. 展开更多
关键词 SEMI-SOLID aluminum alloy MICROSTRUCTURE HARDNESS semi-solid isothermal heat treatment
下载PDF
Effect of Semi-solid Isothermal Heat Treatment on Microstructure of VW63Z Alloy
11
作者 GONG Zhengxuan PANG Song +7 位作者 JI Song DONG Xiwang HOU Xiangwu CHEN Ge HUA Xiru WU Lili JIANG Shanyao XIAO Lü 《上海航天(中英文)》 CSCD 2022年第1期65-76,共12页
The effects of isothermal heat treatment on the semi-solid microstructure evolution of VW63Z(Mg-6Gd-3Y-0.4Zr,wt.%)alloy are studied.It shows that the microstructure of VW63Z alloy could transform from equiaxed crystal... The effects of isothermal heat treatment on the semi-solid microstructure evolution of VW63Z(Mg-6Gd-3Y-0.4Zr,wt.%)alloy are studied.It shows that the microstructure of VW63Z alloy could transform from equiaxed crystal to semi-solid spherical crystal after isothermal heat treatment above 620℃.With the heating temperature elevating from 620℃ to 635℃ and the holding time prolonging from 10 min to 35 min,the liquid fraction increases gradually.The semi-solid microstructure evolution of VW63Z alloy can be divided into three stages,i.e.,particle coarsening and spheroidization;particle necking,coalescence,and Ostwald ripening;and dynamic equilibrium.The semi-solid process window of VW63Z alloy ranges from 620℃ to 635℃,where the best process parameters are holding at 635℃ for 20 min-30 min.The solid fraction,the average particle size,and the shape factor are 41.1%-53.8%,81.5μm-83.2μm,and 0.70-0.75,respectively.The maximum relative deviations of the solid fraction,the particle size,and the shape factor at different heights of the same billet are 44.6%,17.4%,and 16.6%,respectively,which means that it should pay attention to the uniformity of edge and core of VW63Z alloy during isothermal heat treatment.The driving force of microstructure is supposed to be the reduction of solid-liquid interface free energy. 展开更多
关键词 Mg-Gd-Y alloy SEMI-SOLID isothermal heat treatment MICROSTRUCTURE
下载PDF
Evolution and distribution of Al_2Sm phase in as-extruded AZ61-xSm magnesium alloys during semi-solid isothermal heat-treatment 被引量:7
12
作者 Chen-liang CHU Zhi HU +3 位作者 Xiao LI Hong YAN Xiao-quan WU Yuan-lu MAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第7期1311-1320,共10页
The evolution and distribution of Al2Sm phase in as-extruded AZ61-xSm(x=0, 1.5, 2.0 and 2.5, mass fraction, %) magnesium alloys during semi-solid isothermal heat treatment were investigated. The results showed that ... The evolution and distribution of Al2Sm phase in as-extruded AZ61-xSm(x=0, 1.5, 2.0 and 2.5, mass fraction, %) magnesium alloys during semi-solid isothermal heat treatment were investigated. The results showed that when as-extruded AZ61 magnesium alloys were modified with Sm, the smaller and rounder grains were obtained during semi-solid isothermal heat treatment. When the Sm content is 2.0%(mass fraction), the average size of the globular grains reached the smallest value of 90 μm. Although a few Al2Sm particles existed in the α-Mg grains, most of Al2Sm particles solidified at the edge of the globular grains with the width of 20 μm. These phenomena are mainly attributed to the forces acting on Al2Sm particles in front of the solid-liquid interface, leading to Al2Sm particles accumulating at the solid-liquid interface and then solidifying at the edge of the globular grains in the quenching process. 展开更多
关键词 magnesium alloy rare earth element semi-solid isothermal heat treatment Al2Sm particle
下载PDF
Effects of Semi-solid Isothermal Heat Treatment on Microstructures and Damping Capacities of Fly Ash Cenosphere/AZ91D Composites
13
作者 En-Yang Liu Si-Rong Yu +3 位作者 Ming Yuan Fan-Guo Li Yan Zhao Wei Xiong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第9期953-962,共10页
The fly ash cenosphere/AZ91D composites were successfully prepared and isothermally heat-treated at different tem- peratures for different time. The effects of semi-solid isothermal heat treatment on the microstructur... The fly ash cenosphere/AZ91D composites were successfully prepared and isothermally heat-treated at different tem- peratures for different time. The effects of semi-solid isothermal heat treatment on the microstructures and damping capacities of fly ash cenosphere/AZ91D composites were investigated. With the increase in isothermal temperature or holding time, the small liquid droplets within grains increased in size but decreased in quantity. The average size and shape factor of Mg2Si particles increased with the rise of isothermal temperature. The damping capacities of the composites were improved by isothermal heat treatment. At room temperature, the composites after heat treatment at 520 and 550 ℃ had a higher damping capacity due to interface damping when the strain amplitude was lower than about 8.8 × 10^-5, and the composite after heat treatment at 580 ℃ had a better damping capacity because of the dislocation damping under the condition of high strain amplitude. The damping capacities of the composites increased with the rise of the test temper- ature, and the damping mechanisms varied depending on different test temperatures. The interface damping played an important role when the test temperature was below about 100 ℃, and the dislocation damping and grain boundary damping took effect with the rise of test temperature. 展开更多
关键词 Fly ash cenosphere Magnesium matrix composite Semi-solid isothermal heat treatment Microstructuralevolution Damping capacity
原文传递
Effects of isothermal process parameters on semisolid microstructure of Mg-8%Al-1%Si alloy 被引量:4
14
作者 曹丽杰 马国睿 唐春冲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2364-2369,共6页
A Mg-8%Al-1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure o... A Mg-8%Al-1%Si alloy with semisolid microstructure was fabricated by isothermal heat treatment process. The effects of isothermal process parameters such as holding temperature and holding time on the microstructure of Mg-8%Al-1%Si alloy were investigated. The results show that a non-dendritic microstructure could be obtained by isothermal heat treatment. With increasing holding temperature from 560 to 575 °C or holding time from 5 to 30 min, the liquid volume fraction increases, the average size of α-Mg grains grows larger and globular tendency becomes more obvious. In addition, the Mg2Si phase transforms from Chinese script shape to granule shape. The morphology modification mechanisium of Mg2Si phase in Mg-8%Al-1%Si alloy during the semisolid isothermal heat treatment was also studied. 展开更多
关键词 Mg-Al-Si alloy SEMI-SOLID MICROSTRUCTURE isothermal heat treatment Mg2Si phase
下载PDF
Solid-state cold spraying of FeCoCrNiMn high-entropy alloy:an insight into microstructure evolution and oxidation behavior at 700-900℃ 被引量:2
15
作者 Yaxin Xu Weny Li +4 位作者 Longzhen Qu Xiawei Yang Bo Song Rocco Lupoi Shuo Yin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第9期172-183,共12页
About 3 mm thick five-element equimolar high-entropy alloy(HEA) FeCoCrNiMn was successfully deposited by solid-state cold spraying(CS).The high-temperature oxidation behavior of the CSed HEA was investigated at 700-90... About 3 mm thick five-element equimolar high-entropy alloy(HEA) FeCoCrNiMn was successfully deposited by solid-state cold spraying(CS).The high-temperature oxidation behavior of the CSed HEA was investigated at 700-900℃.Heat treatment was performed on the CSed HEA before oxidation to heal the incomplete interfaces between the deposited particles.Results show that the microstructure of the CSed HEA is characterized by grain refinement and abundant interparticle incomplete interfaces.Post-spray heat treatment promotes recrystallization and grain growth in the CSed HEA.After oxidation testing,the oxide scales are composed of multi-layers:a Mn_(2)O_(3)(or Mn_(3)O_(4)) outer layer,a Mn-Cr spinel intermediate layer and a Cr_(2)O_(3) inner layer.The CSed HEA exhibits higher parabolic rate constants and more favorable internal oxidation than the bulk HEAs that have similar compositions in the literature.Such a discrepancy becomes pronounced at higher temperatures.The grain refinement and numerous particle boundaries are responsible for such a distinctive performance of the CSed HEA. 展开更多
关键词 Lold spray High-entropy alloy OXIDATION isothermal heat treatment
原文传递
σ-Phase in Lean Duplex Stainless Steel Sheets 被引量:2
16
作者 Marco Breda Massimo Pellizzari Marco Frigo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第3期331-337,共7页
The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to... The precipitation kinetics of secondary phases in two austeno-ferritic lean duplex stainless steels(lean DSS)were examined after aging the materials at 800 ℃.Owing to the instability of ferrite,all DSS are known to be sensitive to solid-state phase transformations in the critical temperature range 600-1,000 ℃ and different secondary phases may form,depending on composition and microstructure.The performed thermodynamic simulations revealed the proneness to the precipitation of such phases also have been done in lean DSS,but only information on the equilibrium microstructures were achieved.Therefore,the materials were aged at various times,in order to verify the simulations and determine the precipitation kinetics.The occurred structural modifications were observed and quantified by scanning electron microscope and X-ray diffraction measurements,determining phase type,composition and volumetric fraction.At 800 ℃,grade 2101 was found to be only affected by Cr_2N nitrides precipitation,whereas a significant amount of σ-phase was found to form in LDX 2404 for treatment longer than 1 h,almost totally replacing ferrite after 50 h.Up to now,the intermetallic σ-phase has been observed only in the high alloyed DSS,and the unexpected precipitation in grade 2404 highlighted that the increased content of molybdenum in this steel might be considered as determinant for the formation. 展开更多
关键词 Lean duplex stainless steels isothermal heat treatments σ-Phase Chromium nitrides Precipitation kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部