期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Fluid Inclusions and Isotope Geochemistry of the Emba Derho and the Debarwa VMS Deposits, Asmara District, Eritrea 被引量:5
1
作者 XU Jiuhua CHENG Xihui +2 位作者 CHU Haixia XIAO Xing ZHANG Hui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1547-1548,共2页
Objective Recent exploration indicates several localities with significant gold, copper, and zinc resource potential in the Asmara district, Eritrea, including the Emba Derho and Debarwa volcanic-associated massive s... Objective Recent exploration indicates several localities with significant gold, copper, and zinc resource potential in the Asmara district, Eritrea, including the Emba Derho and Debarwa volcanic-associated massive sulfide deposits. These deposits are hosted by the Neoproterozoic metamorphic volcanic rocks of Asmara green stone belt, which strike NNW-SSE and are 200 km long and 5-20 km wide, and the mineralization is often associated with the altered and deformed rocks. The Emba Derho deposit, located 12 km northwest of Asmara (Fig. la), the capital of Eritrea, is the largest Cu-Zn-Au VMS deposit in the Asmara metallogeny belt. It is estimated that the Emba Derho deposit of the Asmara project contains total reserves of 49.8~106 tons of copper ores and 16.8~106 tons of zinc ores. The gold grade of this deposit is about 0.3 lg/t. The Debarwa deposit, situated 26 km southwest of Asmara, has similar ore features with the Emba Derho deposit. 展开更多
关键词 Fluid Inclusions and isotope geochemistry of the Emba Derho and the Debarwa VMS Deposits Asmara District Eritrea SRK VMS
下载PDF
Mineral chemistry and isotope geochemistry of pyrite from the Heilangou gold deposit, Jiaodong Peninsula, Eastern China 被引量:22
2
作者 Yutong Yan Na Zhang +1 位作者 Shengrong Li Yongsheng Li 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第2期205-213,共9页
The Heilangou gold deposit is located in the northern QixiaePenglai gold belt, which is one amongst the three large gold belts in the eastern Shandong Province (Jiaodong Peninsula). The ore body has formed within th... The Heilangou gold deposit is located in the northern QixiaePenglai gold belt, which is one amongst the three large gold belts in the eastern Shandong Province (Jiaodong Peninsula). The ore body has formed within the Guojialing granite. In this study, we report the mineral chemistry of pyrite, as well as the S, Pb, and HeO isotope data of the Heilangou gold deposit. The chemical composition of pyrite in the Heilangou gold deposit indicates that the associated gold deposit is a typical magmatic hydrothermal one. The geochemical signatures and crystal structure of pyrite show that the ore-forming materials have been derived from the crust. The S isotope data of the pyrites from Heilangou show an overall range from 5.5 to 7.8&amp;and an average of 6.7&amp;. The S isotope data in this deposit are similar to those from the deposits in the Jiaodong gold belt. The Pb and S isotope variations are small in the Heilangou gold deposit. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios are 17.4653e17.5958, 15.5105e15.5746 and 38.0749e38.4361, respec-tively. These data plot between the lower crust and the orogenic belt. The Pb isotope data in the Heilangou gold deposit are similar to those in the Linglong gold deposit. From the Qixia gold area (the Liukou and Majiayao gold deposits) to the MupingeRushan gold belt (Rushan gold deposit) to the ZhaoeYe gold belt (the Linglong, Sanshandao and Jiaojia gold deposits), the 206Pb/204Pb ratios progressively increase. The DeO isotope data obtained from quartz separates suggest that the ore-forming fluid was similar to a mixture of magmatic and meteoric waters. These results suggest that the ore-forming elements were primarily from source fluids derived from the lower crust. 展开更多
关键词 Heilangou gold deposits Pyrite isotope geochemistry Genesis
下载PDF
Fluid Inclusion and Stable Isotope Geochemistry of the Shangxu Gold Deposit, Northern Tibet 被引量:2
3
作者 PEI Yingru YANG Zhusen +3 位作者 ZHAO Xiaoyan ZHANG Xiong MA Wang MAO Jingtao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1545-1546,共2页
Objective The Shangxu gold deposit is located in the south of the middle Bangong-Nujiang suture zone in northern Tibet. The origin of this deposit as an orogenic gold deposit is debatable. The study of the Shangxu de... Objective The Shangxu gold deposit is located in the south of the middle Bangong-Nujiang suture zone in northern Tibet. The origin of this deposit as an orogenic gold deposit is debatable. The study of the Shangxu deposit has a profound implication on gold exploration in the Bangong- Nujiang metallogenic belt and can also improve our understanding of gold mineralization in northern Tibet. 展开更多
关键词 In Northern Tibet Fluid Inclusion and Stable isotope geochemistry of the Shangxu Gold Deposit
下载PDF
Isotope Geochemistry of the Xinchang -Yongjia Silver (Lead-Zinc)Ore Belt in Eastern Zhejiang Province
4
作者 Xu Butai, Li Changjiang Zhejiang Institute of Geology and Mineral Resources, Hangzhou, Zhejiangand Chen Haoshou Department of Earth Sciences, Zhejiang U niversity, Hangzhou, Zheyang Liu Xinzhu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1995年第1期69-83,共15页
In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on t... In the Xinchang-Yongjia silver (lead-zinc) ore belt, there mainly occur the large to medium-sized Haoshi, Bamao, Dalingkou and Wubu silver deposits or silver-bearing lead-zinc deposits. On the basis of researches on these typical deposits, the mechanism of leaching-drawing mineralization of Mesozoic geothermal water and the related model are put forward in this paper in the light of the time interval between rock and formation ages as well as hydrogen, oxygen, sulphur and lead isotope geochemical characteristics. The major metallogenic process occurred in volcanic rock layers. The ore-forming fluids are geothermal water coming from meteoric water and circulating at shallow layers. This geothermal water leached and absorbed ore-forming materials from its country rocks during its flowing (such metallogenic elements as silver, lead-zinc and sulphur mainly came from consolidated volcanic rocks), leading to the formation of meso - epithermal silver deposits. 展开更多
关键词 isotope geochemistry silver (lead-zinc) ore belt genesis of ore deposit Zhejiang Province
下载PDF
Fe Isotope Geochemistry of Hydrothermal Fe Exhalites
5
作者 SUN Jian ZHU Xiangkun LI Zhihong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期43-,共1页
The sediments atop the sequence of ophiolite usually contain Fe(-Mn-Si)exhalites,chemical sediments that aremainlycomposedofamorphousFe-Mn oxy-hydroxides and chert/jasper.They were precipitated from hydrothermal fluid... The sediments atop the sequence of ophiolite usually contain Fe(-Mn-Si)exhalites,chemical sediments that aremainlycomposedofamorphousFe-Mn oxy-hydroxides and chert/jasper.They were precipitated from hydrothermal fluids produced by deep leaching of basalt particularly during volcano activity or seafloor spreading.These hydrothermal Fe exhalites provide a good record for the depositional environment and the ocean environment as well.A well-preserved Phanerozoic Fe deposit,Motuosala Fe-Mn deposit,resulted from hydrothermal exhalation,was investigated for its trace element and Fe isotope geochemistry.The deposit is located in Xinjiang province,China and is hosted in a suit of Carboniferous volcano-sedimentary clastic rocks.The Fe deposit is mainly composed of massive hematite Fe oreand banded hematite-jasper ore.The hematite ore/band and jasper band were subjected to be analyzed.They are both composed mainly of Fe2O3 and Si O2,with very low contents of Al2O3 and Ti O2(<1%),indicating they werechemical precipitates with little detrital contamination.They both show slightly LREE depleted or near flat PAAS-normalised REE patterns,with positive Eu anomalies and Y anomolies,indicating that they were sourced from a mixture of high-temperature fluids and seawater.Compared to the hematite Fe ore/band,the jasper band shows higher EuSN/EuSN*but lower Y/Ho values.δ56Fe values for the hematite Fe ores are clustered around-0.3‰,similar to those for high-temperature fluids.The jasper samples show heavier Fe isotope compositions varying from-0.1‰to0.5‰,indicating that they were resulted from partial Fe precipitation.For all samples,δ56Fe values are related to Y/Ho and EuSN/EuSN*values.The results indicate that the hematite Fe ore and jasper were deposited in different environments.The jasper was deposited in a more anoxic condition with higher hydrothermal fluids/seawater ratio,probably when the hydrothermal activity was more intense;while the hematite Fe ore was deposited in a more oxic condition with lower hydrothermal fluids/seawater ratio,probably when the hydrothermal activity was weaker. 展开更多
关键词 Fe isotope geochemistry of Hydrothermal Fe Exhalites
下载PDF
REE and Sr-Nd Isotope Geochemistry for Yixian Fluorite Deposit,Western Liaoning Province,China,and Its Geological Implications 被引量:3
6
作者 孙祥 邓军 +4 位作者 杨立强 王庆飞 杨子荣 龚庆杰 王长明 《Journal of Earth Science》 SCIE CAS CSCD 2010年第2期227-235,共9页
Up to now, there were no systematic studies of geochemistry and isotopic age for the Yixian (义县) fluorite deposit, western Liaoning (辽宁) Province, China. Based on the analysis of metallogenic geological settin... Up to now, there were no systematic studies of geochemistry and isotopic age for the Yixian (义县) fluorite deposit, western Liaoning (辽宁) Province, China. Based on the analysis of metallogenic geological setting, we studied the REE, Rb-Sr and Sm-Nd isotopes. The chondrite-normalized REE patterns of fluorite are characterized by moderate LREE depletion (LREE/HREE=0.95-3.57, (La/Yb)N=0.08-2.84) and enrichment of Sr (146×10^-6-596×10^-6) and moderately positive Eu anomalies (δEu=1.10-1.34), which are similar to those of the host Mesoproterozoic carbonate rocks. The fluorite display (^87Sr/^86Sr)t=-0.708 5, (^143Nd/^144Nd)t=-0.511 785, and δNd(t)=-12.8, which are similar to those of the host Mesoproterozoic carbonate rocks and volcanic rocks of Middle Jurassic Lanqi (蓝旗) Formation. The REE and Sr-Nd isotope geochemistry suggest that the source of the ore-forming material may be the volcanic rocks of Lanqi Formation and host carbonate rocks. The Sm-Nd isochron age of 154±14 Ma (MSWD=0.23) indicates that the Yixian fluorite mineralization nearly corresponds to the period of Lanqi Formation. Based on the integrated geological and geochemical studies, coupled with previous studies, we suggest that Yixian fluorite deposit formed in the extension setting of postcoilisional stage and may be attributed to the partial melting of ancient basaltic rocks in the lower crust induced by underplating of basic magma and to the reaction between the F-rich ore-forming fluids and the host carbonate rocks. 展开更多
关键词 REE Sr-Nd isotope geochemistry isochron age Yixian fluorite deposit westernLiaoning Province.
原文传递
Rare earth elements(REE)and isotope composition(δ^(13)C andδ^(18)O)of manganese ores of Chiatura deposit(Georgia):features of ore formation and genesis
7
作者 Vladimir N.Kuleshov Andrey Yu.Bychkov +1 位作者 Irina Yu.Nikolaeva Maria E.Tarnopolskaya 《Acta Geochimica》 EI CAS CSCD 2023年第4期779-801,共23页
The rare earth elements(REE)geochemistry and the isotope(δ^(13)C,δ^(18)O)composition of manganese ores of the Chiatura(Georgia)deposit were studied.One of the major features of all types of manganese ores is negativ... The rare earth elements(REE)geochemistry and the isotope(δ^(13)C,δ^(18)O)composition of manganese ores of the Chiatura(Georgia)deposit were studied.One of the major features of all types of manganese ores is negative cerium(Ce/Ce*_(PAAS))anomaly and the absence of europium(Eu/Eu*_(PAAS))anomaly.Oxide oolitic manganese ores were formed in oxic shallow marine environments.The content and distribution of REEs(in particular Ce and Eu)in these ores are connected mainly with ferrous oxides.The performed C-and O-isotope research in Mn-carbonates(oolitic and massive)has indicated that carbonate ores were formed by the participation of isotopic ally light CO_(2)which is a result of the oxidation of organic matter in the sediment strata by reducing environments of early diagenesis(and,partially,catagenesis)zone.Obtained negative cerium anomalies in the studied carbonate ores reflect the specific REE patterns in pore waters of sediments of earlier isdiagenesis zone of the Oligocene Chiatura's basin.The deficiency of cerium in this zone remains debatable and requires further study.Formation of manganese carbonates took place multistage by the input of incisional solutions of different chemistry into sea bottom waters and sediments.The absence of europium anomaly indicates about lack of hydrothermal solution input. 展开更多
关键词 REE Cerium anomaly Carbon and oxygen isotope geochemistry Oxide and carbonate manganese ores Chiatura deposit
下载PDF
Stable Isotope and Element Geochemistry of Saline Springs in Evaporite-bearing Mengla Basin,South Yunnan,China
8
作者 ZHANG Xiying MA Haizhou +2 位作者 GAO donglin MIAO Weiliang LI Yongshou 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期176-177,共2页
1 Introduction Mengla Basin is a sub-basin in southern evaporitebearing Lanping-Simao Basin.There are many salt springs in the basin.In 2012,11 spring samples were collected for analyses of chemistry and boron,hydroge... 1 Introduction Mengla Basin is a sub-basin in southern evaporitebearing Lanping-Simao Basin.There are many salt springs in the basin.In 2012,11 spring samples were collected for analyses of chemistry and boron,hydrogen and oxygen 展开更多
关键词 Mengla Basin stable isotope and element geochemistry water-rock reactions saline springs.
下载PDF
Zircon LA-ICP MS U-Pb Age,Sr-Nd-Pb Isotopic Compositions and Geochemistry of the Triassic Post-collisional Wulong Adakitic Granodiorite in the South Qinling,Central China,and Its Petrogenesis 被引量:21
9
作者 QIN Jiangfeng LAI Shaocong +1 位作者 WANG Juan LI Yongfei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第2期425-437,共13页
The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact rel... The Indosinian post-collisional Wulong pluton intruded into the Mesoproterozoic Fuping Group, South Qinling, central China. In the southern part of the pluton, some mafic enclaves have sharp or gradational contact relationships with the host biotite granodiorite. Geochemistry, zircon LA-ICP MS (laser ablation inductively-coupled plasma mass spectrometry) U-Pb chronology and Sr- Nd-Pb isotope geochemistry of the pluton are reported in this paper. The biotite granodiorite shows close compositional similarities to high-silica adakite. Its chondrite-normalized REE patterns are characterized by strong HREE depletion (Yb = 0.33--0.96 10-6 and Y = 4.77-11.19 ×10^-6), enrichment of Ba (775-1386 x 10-6) and Sr (643-1115 × 10^-6) and high Sr/Y (57.83-159.99) and Y/Yb (10.99-14.32) ratios, as well as insignificant Eu anomalies (6Eu = 0.70-0.83), suggesting a feldspar-poor, garnet±amphibole-rich residual mineral assemblage. The mafic enclaves have higher MgO (4.15- 8.13%), Cr (14.79-371.31 × 10-6), Ni (20.00-224.24× 10^-6) and Nb/Ta (15.42-21.91) than the host granodiorite, implying that they are mantle-derived and might represent underplated mafic magma. Zircon LA-ICP MS dating of the granodiorite yields a ^206pb/^238U weighted mean age of 208±2 Ma (MSWD=0.50, 1σ), which is the age of emplacement of the host biotite granodiorite. This age indicates that the Wulong pluton formed during the late-orogenic or post-collisional stage (〈242±21 Ma) of the South Qinling belt. The host biotite granodiorite displays ^87Sr/^86Sr = 0.7059-0.7062, Isr = 0.7044-- 0.7050,^143Nd/^144Nd = 0.51236-0.51238, εNd(t)= -2.26 to -2.66 to ^206Pb/^204pb = 18.099-18.209, ^207pb/^204pb = 15.873-15.979 and ^208pb/^204pb = 38.973-39.430. Those ratios are similar to those of the Mesoproterozoic Yaolinghe Group in the South Qinling. Furthermore, its Nd isotopic model age (-1.02 Ga) is consistent with the age (-1.1 Ga) of the Yaolinghe Group. Based on the integrated geological and geochemical studies, coupled with previous studies, the authors suggest that the Wulong adakitic biotite granodiorite was probably generated by dehydration melting of the Yaolinghe Group-like thickened mafic crust, triggered by underplating of mafic magma at the boundary of the thickened mafic crust and hot lithospheric mantle, and that the Wulong adakitic biotite granodiorite may have resulted from thinning and delamination of the lower crust or breakoff of the subducting slab of the Mianlue ocean during the Indosinian post-collisional orogenic stage of the Qinling orogenic belt. 展开更多
关键词 zircon LA-ICP-MS dating Sr-Nd-Pb isotope geochemistry South Qinling Wulong pluton adakitic magma PETROGENESIS
下载PDF
A Study of Sr, Nd and O Isotopes of the K-rich Melanocratic Dykes in the Late Mesozoic Gold Field in the Jiaodong Peninsula 被引量:14
10
作者 SUN Jinggui, HU Shouxi, LIU Jianmin, SHEN Kun and LING Hongfei Earth Science Institute, Jilin University, Changchun 130062 State Key Laboratory of Research on Metallogenesis of Endogenic Ore Deposits,Nanjing University, Nanjing 210093 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100101 Shandong Institute and Laboratory of Geological Sciences, Jinan 250013 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第4期432-444,共13页
Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, Chi... Geologic, petrographic and petrochemical studies of the late Mesozoic K-rich melanocratic dykes, including lamprophyres, andesite porphyrites and dacite-porphyry in the gold field system in the Jiaodong Peninsula, China, have shown that these dykes are characterized by rich potassium and alkali but poor titanium. They belong to an ultra-high potassic, shoshonitic and high potassic calc-alkaline rock series. The parental magma has relatively high initial strontium ratios ((87Sr/86Sr),=0.70895-0.71140) and low (143Nd/144Nd)1 ratios (varying from 0.51135 to 0.51231); and its δ18Osmow, whole rock values vary from +5.8%c to +10.6%c with a mean of +7.1%c. These features suggest that the source region of the magma is an enriched mantle wedge transformed from a continental lithosphere mantle which has experienced metasomatism by mantle-derived fluids with H2O-dominated fluids that were provided during the underthrusting of an ocean crust. The initial magma was generated by low-degree partial melting of the enriched mantle in its mature stage in the back-arc spreading environment. The evolution of magmas is associated with two trends, i.e., fractional crystallization and mixing with or intensive contamination by palaeo-crust materials or metamorphic rocks. The former process is evident in the gold field system of quartz-vein type, whereas the latter is dominated in the gold field system of the altered-rock type. This conclusion is very important for more detailed study of petrogenesis and mineralization through the crust-mantle interaction (exchange) in the Mesozoic in this region. 展开更多
关键词 late Mesozoic K-rich melanocratic dykes SR Nd and O isotope geochemistry gold field system in the Jiaodong Peninsula
下载PDF
Metallogenesis and ore-forming time of the Changtuxili Mn-Ag-Pb-Zn deposit in Inner Mongolia:Evidence from C-O-S isotopes and U-Pb geochronology 被引量:1
11
作者 Kuo Zhang Ruo-Shi Jin +5 位作者 Feng-Yue Sun Bi-Le Li Peng He Yue-Long Zhang Shuo Guo Tian-Fu Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1369-1380,共12页
This paper reports new geochronological(U-Pb) and isotope(C,O,and S) data to investigate the timing of mineralization and mode of ore genesis for the recently discovered Changtuxili Mn-Ag-Pb-Zn deposit,located on the ... This paper reports new geochronological(U-Pb) and isotope(C,O,and S) data to investigate the timing of mineralization and mode of ore genesis for the recently discovered Changtuxili Mn-Ag-Pb-Zn deposit,located on the western slopes of the southern Great Hinggan Range in NE China.The mineralization is hosted by intermediate-acidic lavas and pyroclastic rocks of the Baiyingaolao Formation.Three stages of mineralization are identified:quartz-pyrite(Stage I),galena-sphalerite-tetrahedrite-rhodochrosite(Stage II),and quartz-pyrite(Stage Ⅲ).δ13C and δ18O values for carbonate from the ore vary from-8.51‰ to-4.96‰ and 3.97‰ to 15.90‰,respectively,which are indicative of a low-temperature alteration environment.δ34SV-CDT values of sulfides range from-1.77‰ to 4.16‰ and show a trend of equilibrium fractionation(δ34SPy>δ34SSp>δ34SGn).These features indicate that pyrite,sphalerite,and galena precipitated during the period of mineralization.The alteration mineral assemblage and isotope data indicate that the weakly acidic to weakly alkaline ore-forming fluid was derived largely from meteoric water and the ore-forming elements C and S originated from magma.During the mineralization,a geochemical barrier was formed by changes in the pH of the ore-forming fluid,leading to the precipitation of rhodochrosite.On the basis of the mineralization characteristics,new isotope data,and comparison with adjacent deposits,we propose that the Changtuxili Mn-Ag-Pb-Zn deposit is an intermediate-to lowsulfidation epithermal deposit whose formation was controlled by fractures and variability in the pH of the oreforming fluid.The surrounding volcanic rocks yield zircon U-Pb ages of 160-146 Ma(Late Jurassic),indicating that the mineralization is younger than 146 Ma. 展开更多
关键词 Inner Mongolia Changtuxili Mn-Ag-Pb-Zn deposit C-O-S isotope geochemistry Zircon U-Pb age Intermediate-to low-sulfidation epithermal deposit
下载PDF
Stable isotope(δ^(13)C_(ker),δ^(13)C_(carb),δ^(18)O_(carb)) distribution along a Cambrian outcrop section in the eastern Tarim Basin,NW China and its geochemical significance 被引量:1
12
作者 Hu Liu Zewen Liao +3 位作者 Haizu Zhang Yankuan Tian Bin Cheng Shan Yang 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第1期163-170,共8页
This study investigated the geochemical features of the lower Paleozoic strata of Yaerdang Mountain outcrop along with the core samples from well TD2∈ in the eastern Tarim Basin,NW China.The total organic carbon abun... This study investigated the geochemical features of the lower Paleozoic strata of Yaerdang Mountain outcrop along with the core samples from well TD2∈ in the eastern Tarim Basin,NW China.The total organic carbon abundance,hydrocarbon-generating precursor biospecies,and stable isotope ratios of organics and carbonate(δ13Cker,δ13Ccarb and δ18Ocarb) were comprehensively studied for their possible correlative constraints during sedimentary evolution.The results revealed that the δ13Cker(VPDB) of Cambrian kerogens along the outcrop section varied from-34.6‰ to-28.4‰,indicating an increasing tendency from the lower Cambrian to the upper Cambrian.This was on the whole accompanied by the variation in the δ13Ccarb and δ18Ocarb along the profile,which might be associated with the changes in the sea level and also in the compositional variation of benthic and planktonic biomass.The large variation in the stable carbon isotope ratios up to 6‰ along the outcrop section reflected the heterogeneity of the Cambrian source rocks from the eastern Tarim Basin.Hence,the 13C-enriched crude oils from well TD2∈might have been derived from a localized stratum of Cambrian source rocks.The results from this study showed the possibility of multiple source kitchens in the Cambrian-lower Ordovician portion of Tarim Basin. 展开更多
关键词 Kerogen Heterogeneity Tarim Basin Stable isotope geochemistry
下载PDF
China's First Independent Cobalt Deposit and its Metallogenic Mechanism:Evidence from Fluid Inclusions and Isotopic Geochemistry 被引量:8
13
作者 FENG Chengyou QI Feng +2 位作者 ZHANG Dequan LI Daxin SHE Hongquan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第6期1403-1418,共16页
The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformab... The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformably in low-grade metamorphic volcano-sedimentary rock series with well-developed Na-rich hydrothermal sedimentary rocks and typical hydrothermal sedimentary ore fabrics. Fluid inclusions and isotopic geochemistry studies suggest that cobalt mineralizing fluid is dominated by NaCI-H20 system, accompanied by NaCI-CO2-H20-N2 system responsible for gold mineralization. Massive, banded and disseminated pyrite ores have similar compositions of He and Ar isotopes from the mineralizing fluid, with 3He/4He range between 0.10 to 0.31Ra (averaging 0.21Ra), and 4~Ar/36Ar between 302 and 569 (averaging 373), which reflects that Co mineralizing fluids derived dominantly from meteoric water deeply circulating. ~34S values of pyrite approaches to zero (~34S ranging from -4.5%o to +1.5%o, centering around -1.8%o to -0.2%o), reflecting its deep source. Ore lead is characterized by distinctly high radiogenesis, with 2~6pb/2~4pb〉19.279, 2~7pb/2~4pb〉15.691 and 2~spb/2~4pb〉39.627, and its values show an increase trend from country rocks, regional Paleozoic volcanic rocks to ores. This may have suggested that high radiogentic ore Pb derived mainly from country rocks by leaching meteoric water-dominated hydrothermal fluid during its circulation at depth. Cobalt occurs mainly in sulfide phase (such as pyrite), but cobalt enrichment, and presence and increasing contents of Co-bearing minerals have a positive correlation with metamorphic degree. The Tuolugou deposit and other typical strata-bound Co-Cu-Au deposits have striking similarities in the geological features and metallogenic pattern of primary cobalt. All of them are syngenetic hydrothermal exhalative sedimentation in origin. 展开更多
关键词 cobalt deposit fluid inclusion isotopic geochemistry SEDEX metallogenic mechanism Tuolugou in Qinghai Province eastern Knnlun orogenic belt
下载PDF
Granulite Genesis and Tectonic Evolution in Tongbai Area:Single Zircon Evaporation Ages and Nd Isotopic Geochemistry 被引量:7
14
作者 Zhang Hongfei Gao Shan Zhang Li Zhong Zengqiu Ling Wenli Wang Linsen Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期31-36,共6页
According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith ag... According to the age measurements of single zircon evaporation method, combined with the study of Nd isotopic geochemistry in Tongbai area, the protolith age of basic granulites is about 1 010 Ma; the protolith age of intermediate acid granulites is probably more than 904 Ma, which is close to the age of the basic granulites. The basic granulites would be the nature occurrence of basic magma underplating beneath the base of lower crust in the North Qinling crustal vertical growth event at about 1 000 Ma. However, the intermediate acid granulites were the result of the mixing fusion between the lower crust material and the underplating basic magma, which shows a strong crust mantle interaction. The 470-480 Ma are the peak metamorphic ages of the basic and intermediate acid granulites, which related to the crust bi direction shortening and crust thickening due to the Erlangping back arc basin southward subduction and the paleo Qinling oceanic plate northward subduction. 展开更多
关键词 GRANULITE zircon evaporation geochronology Nd isotopic geochemistry lower crust genesis tectonic evolution Tongbai area.
下载PDF
Indosinian Tectonic Setting of the Southern Yidun Arc: Constraints from SHRIMP Zircon Chronology and Geochemistry of Dioritic Porphyries and Granites 被引量:6
15
作者 LIU Shuwen WANG Zongqi +2 位作者 YAN Quanren LI Qiugen ZHANG Dehui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期387-399,共13页
A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and... A mass of granitoid and dioritic intrusions are distributed in the southern Yidun Arc, among which the representative Indosinian intrusions include the Dongco and Maxionggou granitoid intrusions in Daocheng County and hypabyssal intrusions intruding into arc volcanic rocks near the Xiangcheng town. The Dongco and Maxionggou granitoid intrusions consist mainly of porphyraceous monzogranites, megacryst monzogranites and aplite granites. The Xiangcheng hypabyssal intrusions are composed dominantly of dioritic porphyries. SHRIMP zircon ages of 224±3 Ma and 222±3 Ma have been obtained for the Dongco granitoid intrusion and the Xiangcheng dioritic porphyries, respectively. The Xiongcheng dioritic porphyries show a calc-alkaline geochemical feature, and are characterized by higher Sr/Y ratios, depletive Nb, Ta, P and Ti, enriched LILEs, and lower εNd (t) (=-3.27), suggesting that they might be derived from mantle source magmas that were obviously contaminated by continent crustal materials. However, the Dongco and Maxionggou granitoids belong to high-potassium calcalkaline series with a per-metaluminous feature, and are characterized by higher CaO/(∑FeO+MgO) and Al2O3/(∑FeO+ MgO) ratios, lower (La/Yb)n and Sr/Y ratios, depletive Nb, Ta, Sr, P and Ti, enriched LILEs, and very low εNd (t) (=-8.10), indicating that the granitoids might be derived from partial melting of continental crust materials mainly of graywacke. Petrogenesis of Dongco and Maxionggou granitoids implies that there was an oceanic crust between the Zongza continental block (ZCB) and western margin of the Yangtze Craton (WMYZC). And the oceanic crust slab subducted westward during the Indosinian Epoch, producing an Andes-type continent marginal arc and a backarc basin at the WMSCC. Then the oceanic basin closed and a sinistrally lateral collision occurred at ca. 224 Ma-222 Ma between the ZCB and the WMYZC, causing partial melting of sediments in the back-arc basin to generate granitoid magmas of the Dongco and Maxionggou intrusions. 展开更多
关键词 southern Yidun Arc dioritic porphyries and monzogranites SHRIMP zircon age geochemistry and Nd isotope petrogenesis and geodynamics
下载PDF
Isotopic Geochemistry of Evaporite-Carbonate Sediments in Majiagou Formation Euxinic Systems with Implications for Evaluating Ordovician Northern Shaanxi Epicontinental Sea, Ordos Basin 被引量:1
16
作者 ZHAO Haitong ZHANG Yongsheng +5 位作者 XING Enyuan WANG Linlin GUI Baoling SHANG Wenjun PENG Yuan SHI Lizhi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第1期418-419,共2页
Objective The Ordovician Shaanxi salt basin is located in the junction of the North China Sea and the Qilian Sea.ln this basin the Majiagou Formation accumulated more than 1000m thick evaporite-carbonate sediments, a... Objective The Ordovician Shaanxi salt basin is located in the junction of the North China Sea and the Qilian Sea.ln this basin the Majiagou Formation accumulated more than 1000m thick evaporite-carbonate sediments, and this basin is divided into east and west saltern sags (ESS, WSS) according to the characteristics of geochemical analysis (Zhang Yongsheng et al., 2014). Isotope stratigraphy of evaporite sediments represents a fundamental tool in palaeoenvironmental and palaeoclimate reconstruction. This work first illustrates the stable isotope geochemistry of the Shaanxi evaporites, which represents the most significant example of detailed facies stratigraphy for the Majiagou Formation evaporite-carbonate (M5) in Ordos epicontinental sea (Liu Jingdong et al., 展开更多
关键词 Isotopic geochemistry Majiagou Formation Euxinic Systems
下载PDF
GEOCHEMISTRY STUDY OF GOLD SILVER DEPOSITS IN THE MIDDLE UPPER PROTEROZOIC SUBERATHEM IN SOUTHERN QINLING METALLOGENETIC ZONE
17
作者 Wang Dongbo He Xuefeng(Translated) 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 1992年第3期11-16,29,共7页
According to Ihe combinations of mctallogcnetic elements and minerals assemblages,the Au-Ag deposits in the Middle-Upper Proterozoic Suberathcm of the middle of northern margin of Yangtze Platform could be classified ... According to Ihe combinations of mctallogcnetic elements and minerals assemblages,the Au-Ag deposits in the Middle-Upper Proterozoic Suberathcm of the middle of northern margin of Yangtze Platform could be classified into four types,(l)Au-Ag-Pb-Zn type,(2)Au-Ag-Te type,(3)Au-quartz vein type,(4)Au-Ag-Pb-Zn-Ba type.The Yangpin formation and the upper Dangyuhe subformation,which belong to Wudangshan group,are regarded as favorable strata for Au-Ag mineralization by systematic assessments for Au-Ag bearing ability of the strata,as well as the felsic rocks of Bikou group.The mctallogcnetic physicochemical conditions and the stable isotopic compositions(S.Pb,H.O,C)have been studied in this paper.The sources of metallogenetic materials,origins of fluids and genesis of various deposits have also been studied. 展开更多
关键词 Yangtze Platform Middle—Upper Proterozoic Suberathem Au-Ag deposit assessment physicochemical stable condition isotopic geochemistry
下载PDF
Geochronology and petrogenesis of the mafic dykes from the Purang ophiolite:Implications for evolution of the western Yarlung-Tsangpo suture zone,southwestern Tibet 被引量:10
18
作者 Fahui Xiong Yuanku Meng +4 位作者 Jingsui Yang Zhao Liu Xiangzhen Xu Alireza Eslami Ran Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第1期277-292,共16页
The>2000 km Indus-Yarlung Tsangpo suture zone(IYSZ)is composed of the Neo-tethys oceanic remnants,flysch units and related continental rocks,which has been regarded as the boundary between the Eurasian and Indian t... The>2000 km Indus-Yarlung Tsangpo suture zone(IYSZ)is composed of the Neo-tethys oceanic remnants,flysch units and related continental rocks,which has been regarded as the boundary between the Eurasian and Indian terranes.Among the ophiolitic complexes,the Purang ophiolite is the biggest massif in the IYSZ,and many studies have been conducted on this ophiolite.However,previous studies have mainly focused on harzburgite,clinopyroxenite and dunite.Field observations show that mafic dykes were emplaced within the Purang ophiolite.However,petrogenetic evolutions of those mafic dykes are poorly understood.In this study,we present new LA-ICP-MS zircon U-Pb dating results,whole-rock geochemistry and Sr-Nd-Hf isotope analyses for microgabbro,gabbro and dolerite dykes from the Purang ophiolite of the southwestern IYSZ,respectively.Three samples yielded zircon U-Pb ages of144.2±2.1 Ma.127.9±2.3 Ma and 126.5±0.42 Ma,suggesting two different phases of magmatic activities distinctly.Whole-rock geochemical results suggest that the gabbro samples show alkaline features marked by enrichments of light rare earth elements(LREE)and large-ion lithophile elements(LILE),as well as Nb-Ta elements,suggesting an oceanic island basalt-like(OIB-like)geochemical affinity.However,the dolerite and microgabbro samples demonstrate sub-alkaline characteristics with normal mid-oceanic ridge basalt-like(N-MORB-like)geochemical features.Three distinct mafic dykes show significant Rb element depletion.The geochemical data and Sr-Nd-Hf isotopic features suggest that the microgabbro and gabbro rocks were derived from a depleted mantle that had been metasomatized by partial melts of sediments and enriched slab-derived fluids.The dolerite was also originated from a depleted mantle marked by significantly depleted Sr-Nd-Hf compositions,which was not influenced by enriched slab-derived fluids and sediments contamination during subsequent evolution.The isotope and geochemical data and tectonic diagrams suggest a tectonic transition from a within-plate to a midoceanic ridge basalt-like(MORB-like)setting during the period from ca.144 Ma to 127 Ma.Combined with regional background and this study,we propose that these mafic dykes were formed in an oceanic back-arc basin setting.Additionally,integrated with previous studies,we suggest that the geodynamic evolution of the southwestern and central parts of the Neo-Tethys oceanic basin is comparable in Early Cretaceous. 展开更多
关键词 isotope geochemistry Mafic rocks Purang ophiolite Yarlung Tsangpo suture zone
下载PDF
Genesis of the Maoling gold deposit in the Liaodong Peninsula:Constraints from a combined fluid inclusion,C-H-O-S-Pb-He-Ar isotopic and geochronological studies 被引量:2
19
作者 Peng Zhang Linlin Kou +1 位作者 Yan Zhao Deming Sha 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第4期11-33,共23页
The large tonnage Maoling gold deposit(25 t@3.2 g/t)is located in the southwest Liaodong Peninsula,North China Craton.The deposit is hosted in the Paleoproterozoic metamorphic rocks.Four stages of mineralization were ... The large tonnage Maoling gold deposit(25 t@3.2 g/t)is located in the southwest Liaodong Peninsula,North China Craton.The deposit is hosted in the Paleoproterozoic metamorphic rocks.Four stages of mineralization were identified in the deposit:(stageⅠ)quartz-arsenopyrite±pyrite,(stageⅡ)quartz-goldarsenopyrite-pyrrhotite,(stageⅢ)quartz-gold-polymetallic sulfide,and(stageⅣ)quartz-calcitepyrrhotite.In this paper,we present fluid inclusion,C-H-O-S-Pb-He-Ar isotope data,zircon U-Pb,and gold-bearing sulfide(i.e.arsenopyrite and pyrrhotite)Rb-Sr age of the Maoling gold deposit to constrain its genesis and ore-forming mechanism.Three types of fluid inclusions were distinguished in quartzbearing veins,including liquid-rich two-phase(WL type),gas-rich two-phase(GL type),and daughter mineral-bearing fluid inclusions(S type).Fluid inclusions data show that the homogenization at temperatures 197 to 372°C for stageⅠ,126 to 319°C for stageⅡ,119 to 189°C for stageⅢ,and 115 to 183°C for stageⅣ,with corresponding salinities of 3.7 to 22.6 wt.%,4.7 to 23.2 wt.%,5.3 to 23.2 wt.%,and 1.7 to14.9 wt.%Na Cl equiv.,respectively.Fluid boiling was the critical factor controlling the gold and associated sulfide precipitation at Maoling.Hydrogen and oxygen stable isotopic analyses for quartz yielded δ^(18)O=-5.0‰ to 9.8‰ and δD=-133.5‰ to-77.0‰.Carbon stable isotopic analyses for calcite and ankerite yielded δ^(13)C=-2.3‰to-1.2‰ and O=7.9‰ to 14.1‰.The C-H-O isotope data show that the oreforming fluids were originated from magmatic water with meteoric water input during mineralization.Hydrothermal inclusions in arsenopyrite have ^(3)He/^(4)He ratios of 0.002 Ra to 0.054 Ra,and ^(40)Ar/^(36)Ar rations of 1225 to 3930,indicating that the ore-forming fluids were dominantly derived from crustal sources almost no mantle input.Sulfur isotopic values of Maoling fine-grained granite range from6.‰1 to 9.8‰,with a mean of 7.7‰,δ^(34)S values of arsenopyrite from the mineralized phyllite(host rock)range from 8.9‰ to 10.6‰,with a mean of 10.0‰,by contrast,δ^(34)S values of sulfides from ore vary between 4.3‰and 10.6‰,with a mean of 6.8‰,suggesting that sulfur was mainly originated from both the host rock and magma.Lead radioactive isotopic analyses for sulfides yielded^(206)Pb/^(204)Pb=15.830–17.103,^(207)Pb/^(204)Pb=13.397–15.548,^(208)Pb/^(204)Pb=35.478–36.683,and for Maoling fine-grained granite yielded ^(206)Pb/^(204)Pb=18.757–19.053,^(207)Pb/^(204)Pb=15.596–15.612,and ^(208)Pb/^(204)Pb=38.184–39.309,also suggesting that the ore-forming materials were mainly originated from the host rocks and magma.Zircon U-Pb dating demonstrates that the Maoling fine-grained granite was emplaced at 192.7±1.8 Ma,and the host rock(mineralized phyllite)was emplaced at some time after2065.0±27.0 Ma.Arsenopyrite and pyrrhotite give Rb–Sr isochron age of 188.7±4.5 Ma,indicating that both magmatism and mineralization occurred during the Early Jurassic.Geochronological and geochemical data,together with the regional geological history,indicate that Early Jurassic magmatism and mineralization of the Maoling gold deposit occurred during the subducting Paleo-Pacific Plate beneath Eurasia,and the Maoling gold deposit is of the intrusion-related gold deposit type. 展开更多
关键词 GEOCHRONOLOGY Fluid inclusions isotope geochemistry Maoling gold deposit Liaodong Peninsula
下载PDF
Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group,SW Cameroon:Insights from isotopic,geochemical and geochronological studies of drillcore samples 被引量:1
20
作者 Landry Soh Tamehe Chongtao Wei +4 位作者 Sylvestre Ganno Carlos Alberto Rosiere Jean Paul Nzenti Chesther Gatse Ebotehouna Guanwen Lu 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期549-572,共24页
The discovery of the Gouap banded iron formations(BIFs)-hosted iron mineralization in the northwestern of the Nyong Group(Ntem Complex)in southwestern Cameroon provides unique insights into the geology of this region.... The discovery of the Gouap banded iron formations(BIFs)-hosted iron mineralization in the northwestern of the Nyong Group(Ntem Complex)in southwestern Cameroon provides unique insights into the geology of this region.In this contribution,we firstly report detailed study of geochemistry,isotopic and geochronology of well preserved samples of the Gouap BIFs collected from diamond drillcores.The Gouap BIFs consist mainly of amphibole BIFs and amphibole-pyrite BIFs characterized by dominant Fe_(2)O_(3)+SiO_(2)contents and variable contents of CaO,MgO and SO_(3),consistent with the presence of amphibole,chlorite,epidote and pyrite,formed during amphibolite facies metamorphism and overprinted hydrothermal event.The amphibole–pyrite BIFs are typically enriched in trace and rare earth elements(REE)compared to the amphibole BIFs,suggesting the influence of detrital materials as well as secondary hydrothermal alteration.The Post Archean Australian Shale(PAAS)-normalized REE–Y profiles of the Gouap BIFs display positive La,Eu anomalies,weak negative Ce anomalies,indicating a mixture of low-temperature hydrothermal fluids and relatively oxic conditions probably under relative shallow seawater.We present here the first isotopic data of BIFs within the Ntem Complex.Theδ^(30)Si_(NBS28)values of the quartz from the Gouap BIFs vary from-1.5‰to-0.3‰and from-0.8‰to-0.9‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.The quartz hasδ^(18)OV-SMOW values of 6.8‰–9.5‰(amphibole BIFs)and 9.2‰–10.6‰(amphibole–pyrite BIFs).The magnetite from the Gouap BIFs showsδ^(18)O values ranging from-3.5‰to-1.8‰and from-3‰to-1.7‰for the amphibole BIFs and amphibole–pyrite BIFs,respectively.Moreover,the pyrite grains in the amphibole–pyrite BIFs displayδ34S values of 1.1‰–1.8‰.All isotopic data of the Gouap BIFs confirm that they might have precipitated from low-temperature hydrothermal fluids with detrital input distant from the volcanic activity.According to their geochemical and isotopic characteristics,we propose that the Gouap BIFs belong to the Superior type.In situ U–Pb zircon dating of BIFs was conducted to assess the BIF depositional age based on strong evidence of zircon in thin section.The Gouap BIFs were probably deposited at 2422±50 Ma in a region where sediments extended from continental shelf to deep-water environments along craton margins like the Caue Formation of the Minas Supergroup,Brazil.The studied BIFs have experienced regional hydrothermal activity and metamorphism at 2089±8.3 Ma during the Eburnean–Transamazonian orogeny.These findings suggest a physical continuity between the protocratonic masses of both Sao Francisco and Congo continents in the Rhyacian Period. 展开更多
关键词 Gouap Banded iron formations isotope geochemistry Zircon geochronology Ryacian period Brasiliano-Congo orogeny
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部