Objective As the uplift belt on the southem margin of the Tarim block, the Tiekelike block consists mainly of a set of Precambrian metamorphic rocks with granulite and gneisses. The Heluositan group-complex is the mo...Objective As the uplift belt on the southem margin of the Tarim block, the Tiekelike block consists mainly of a set of Precambrian metamorphic rocks with granulite and gneisses. The Heluositan group-complex is the most ancient rock series in the area, and is a key area for studying the formation and evolution of the Precambrian basement of the Tarim craton. LA-ICP-MS zircon U-Pb dating and Hf isotopic analysis of granulite in this area provide new evidence for revealing the formation and evolution of the Precambrian basement in the Tarim Basin.展开更多
Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902 ...Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902 ± 12 Ma, 1852 ± 9 Ma and 1917 ± 48 Ma. Lead isotopic analyses of marble from the Xiquegou Member of the Qingchenzi orefield yield a Pb-Pb isochron age of 1844 ± 27 Ma. 40Ar-39Ar quick neutron activation dating of phlogopites and microclines coexisting with ore minerals in the Wengquangou boron (iron) and Zhuanmiao boron deposits shows that: (1) the phlogopite from the Wengquangou has a plateau age of 1923 ± 1.5 Ma and an isochron age of 1924 ± 2.5 Ma; (2) the microcline from the Wengquangou has the plateau age of 1407 ± 5.4 Ma and 220 ± 12 Ma and an isochron age of 1403 ± 19 Ma; (3) the phlogopites from the Zhuanmiao yield a plateau age 1918 ± 1.3 Ma and an isochron age of 1918 ± 2.9 Ma; (4) the microclines from the Zhuanmiao yield the plateau age of 1420 ± 16 Ma and 250 ± 8 Ma and an isochron age of 1425 ± 19 Ma and 269 ± 16 Ma. These ages indicate that the eastern Liaoning area happened around 1900 Ma, an important tectonomagmatic event, which is consistent with the worldwide Mid-Proterozoic tectonomagmatic event. During this period, the Proterozoic Liaohe Group was folded and underwent strong normal metamorphism, and the (hydrothermal) sedimentary boron deposits (or source beds) formed earlier were strongly superimposed by mineralization, resulting in enrichment of boron; later regional geological processes made little contribution to the formation of the boron deposits. Lead isotopic components show that the U-Pb and Th-Pb isotopic system reached homogenization in the ores whereas only the U-Pb isotopic system reached homogenization in the marble from the Xiquegou district, which indicates that the boron deposits superimposed in the studied area endured a relatively strong process of hydrothermal migmatization during the end phase of early Proterozoic metamorphism.展开更多
Previous studies have obtained some petrogenetic and metallogenic chronological data with SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb, zircon LA-ICPMS (laser-ablation-inductively coupled plasma ma...Previous studies have obtained some petrogenetic and metallogenic chronological data with SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb, zircon LA-ICPMS (laser-ablation-inductively coupled plasma mass spectroscopy) U-Pb, molybdenite Re-Os isochron and muscovite Ar-Ar methods in southern Jiangxi Province and its adjacent areas. Based on these, the purpose of this paper is to study the petrogenetic and metallogenic ages and their time gap for different genetic types of W-Sn deposits, and thus to research their numerous episodes, zonal arrangement and their geodynamic background. The result shows that the large-scale W-Sn mineralization in southern Jiangxi Province occurred in the middle to late Jurassic (170-150 Ma), the skarn W-Sn-polymetallic deposits formed much earlier (170-161 Ma), and all of the wolframite-quartz vein type, greisen type, altered granite type and fractured zone type tungsten deposits formed in the late Jurassic (160-150 Ma). In one ore field or ore district, greisen type tungsten deposits formed earlier than quartz vein type ones hosted in the endoor exo-contact zone; and quartz vein type hosted in the endocontact zone formed earlier than that of exocontact zone. There is no significant time difference between tungstentin mineralization and its intimately associated parent granite emplacement (1-6 Ma). They all formed in the same rock-forming and ore-forming system and under the same geodynamic setting. Regionally, rock-forming and ore-forming processes of the W-Sn deposits in the Nanling region (include southern Jiangxi Province, southern Hunan Province, northern Guangdong Province and eastern Guangxi Zhuang Autonomous Region) exhibit numerous episodes. The mineralization in the Nanling region mainly occurred at (240-210) Ma, (170-150) Ma and (130-90) Ma. The tungsten-tin deposits in this region are centered by the largest scale in southern Jiangxi Province and southern Hunan Province, and become small in the east, west, south and north directions. This displays a zonal arrangement and temporal and spatial distribution regularity. Integrated with the latest research results, it is concluded that the W-Sn mineralization in southern Jiangxi Province and its adjacent areas corresponds to the second large-scale mineralization in South China. The Indosinian W-Sn mineralization formed under the extensional tectonic regime between collisional compressional stages, while the Yanshanian large-scale petrogenetic and metallogenic processes occurred in the Jurassic intraplate extensional geodynamic setting of lithosphere extension.展开更多
: Using the single—zircon evaporation technique and U—Pb method, the authors have conducted an isotope geochonological study of the Huilanshan granulite and Shima garnet-bearing plagioclase gneiss (“country rocks”...: Using the single—zircon evaporation technique and U—Pb method, the authors have conducted an isotope geochonological study of the Huilanshan granulite and Shima garnet-bearing plagioclase gneiss (“country rocks” of the Shima eclogite) in the Dabie Mountains. The study shows that these rocks have peak metamorphic ages of 443–455 Ma, which are essentially consistent with that of the Caledonian high—ultrahigh pressure eclogites. This indicates the existence of the Caledonian collisional orogeny in the Dabie Mountains.展开更多
The demarcation of the Lower-Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower-Middle Triassic strata of different types, from platform to basin facies,are well developed in Southw...The demarcation of the Lower-Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower-Middle Triassic strata of different types, from platform to basin facies,are well developed in Southwest China. This is favorable for the study of the Olenekian-Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3,Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N, triangularis Assemblage-Zone; 5,Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early-Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N, triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower-Middle Triassic boundary. The Lower-Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section,whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower-Middle Triassic boundary in South China. Based on the analysis of high -precision and high-sensitivity Secondary Ion Mass Spectrum data ,the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9 Ma (2σ), which is a directly measured zircon U-Pb age of the Lower-Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower-Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower-Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower-Middle Triassic boundary.展开更多
The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zon...The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding-Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonarites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoprotero/oic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.展开更多
There are five major geological events in Precambrian complex, Taihangshan region determined by researching into geology and isotopic chronology of the complex. Basaltic magma erupted and quartz-dioritic to tonalitic ...There are five major geological events in Precambrian complex, Taihangshan region determined by researching into geology and isotopic chronology of the complex. Basaltic magma erupted and quartz-dioritic to tonalitic magma intruded in earlier neo-Archaean, which formed hornblende-plagiogneiss of Fuping gneiss complex and metamorphic mafic rock enclaves in TTGgneiss complex. Granulite facies metamorphism and emplacement of biotite-plagiogneiss occurred in late neo-Archaean. Extension and uplifting from the end of neo-Archaean to Paleoproterozoic era formed Chengnanzhuang large extensional deformation zones and metamorphic mafic veins emplaced into the deformation zones. Remobilization of Precambrian complex and tectonic uplifting in late Paleoproterozoic era formed Longquanguan ductile shear zone and emplacement of Nanying gneiss. Occurrence of regional granite pegmatite at the end of Paleoproterozoic era means the end of the Lüliang movement. gneiss complex. Granulite facies metamorphism and emplacement of biotite-plagiogneiss occurred in late neo-Archaean. Extension and uplifting from the end of neo-Archaean to Paleoproterozoic era formed Chengnanzhuang large extensional deformation zones and metamorphic mafic veins emplaced into the deformation zones. Remobilization of Precambrian complex and tectonic uplifting in late Paleoproterozoic era formed Longquanguan ductile shear zone and emplacement of Nanying gneiss. Occurrence of regional granite pegmatite at the end of Paleoproterozoic era means the end of the Lüliang movement.展开更多
基金supported by Xinjiang Uygur Autonomous Region 1:50000 special funds to support the transfer(grant No.1212011140056)
文摘Objective As the uplift belt on the southem margin of the Tarim block, the Tiekelike block consists mainly of a set of Precambrian metamorphic rocks with granulite and gneisses. The Heluositan group-complex is the most ancient rock series in the area, and is a key area for studying the formation and evolution of the Precambrian basement of the Tarim craton. LA-ICP-MS zircon U-Pb dating and Hf isotopic analysis of granulite in this area provide new evidence for revealing the formation and evolution of the Precambrian basement in the Tarim Basin.
基金supported by the National 973 Project of China(G1999043201)
文摘Lead isotopic analytic data of 30 ores gathered from the Zhuanmiao boron deposit, Wengquangou boron (iron) deposit and its Dongtaizi Ore Member constitute three isochrons, the corresponding ages of which are 1902 ± 12 Ma, 1852 ± 9 Ma and 1917 ± 48 Ma. Lead isotopic analyses of marble from the Xiquegou Member of the Qingchenzi orefield yield a Pb-Pb isochron age of 1844 ± 27 Ma. 40Ar-39Ar quick neutron activation dating of phlogopites and microclines coexisting with ore minerals in the Wengquangou boron (iron) and Zhuanmiao boron deposits shows that: (1) the phlogopite from the Wengquangou has a plateau age of 1923 ± 1.5 Ma and an isochron age of 1924 ± 2.5 Ma; (2) the microcline from the Wengquangou has the plateau age of 1407 ± 5.4 Ma and 220 ± 12 Ma and an isochron age of 1403 ± 19 Ma; (3) the phlogopites from the Zhuanmiao yield a plateau age 1918 ± 1.3 Ma and an isochron age of 1918 ± 2.9 Ma; (4) the microclines from the Zhuanmiao yield the plateau age of 1420 ± 16 Ma and 250 ± 8 Ma and an isochron age of 1425 ± 19 Ma and 269 ± 16 Ma. These ages indicate that the eastern Liaoning area happened around 1900 Ma, an important tectonomagmatic event, which is consistent with the worldwide Mid-Proterozoic tectonomagmatic event. During this period, the Proterozoic Liaohe Group was folded and underwent strong normal metamorphism, and the (hydrothermal) sedimentary boron deposits (or source beds) formed earlier were strongly superimposed by mineralization, resulting in enrichment of boron; later regional geological processes made little contribution to the formation of the boron deposits. Lead isotopic components show that the U-Pb and Th-Pb isotopic system reached homogenization in the ores whereas only the U-Pb isotopic system reached homogenization in the marble from the Xiquegou district, which indicates that the boron deposits superimposed in the studied area endured a relatively strong process of hydrothermal migmatization during the end phase of early Proterozoic metamorphism.
基金financially supported by the National Key Basic Research Program (Grant2012CB416704) from the Ministry of Science and Technology, Chinagrant No. 40772063 from the National Natural Science Foundation of China+1 种基金the Program of Excellent Young Scientists from the Ministry of Land and Resources (200809)Geological Survey Program Grant 1212010561603-2 from the China Geological Survey
文摘Previous studies have obtained some petrogenetic and metallogenic chronological data with SHRIMP (sensitive high-resolution ion microprobe) zircon U-Pb, zircon LA-ICPMS (laser-ablation-inductively coupled plasma mass spectroscopy) U-Pb, molybdenite Re-Os isochron and muscovite Ar-Ar methods in southern Jiangxi Province and its adjacent areas. Based on these, the purpose of this paper is to study the petrogenetic and metallogenic ages and their time gap for different genetic types of W-Sn deposits, and thus to research their numerous episodes, zonal arrangement and their geodynamic background. The result shows that the large-scale W-Sn mineralization in southern Jiangxi Province occurred in the middle to late Jurassic (170-150 Ma), the skarn W-Sn-polymetallic deposits formed much earlier (170-161 Ma), and all of the wolframite-quartz vein type, greisen type, altered granite type and fractured zone type tungsten deposits formed in the late Jurassic (160-150 Ma). In one ore field or ore district, greisen type tungsten deposits formed earlier than quartz vein type ones hosted in the endoor exo-contact zone; and quartz vein type hosted in the endocontact zone formed earlier than that of exocontact zone. There is no significant time difference between tungstentin mineralization and its intimately associated parent granite emplacement (1-6 Ma). They all formed in the same rock-forming and ore-forming system and under the same geodynamic setting. Regionally, rock-forming and ore-forming processes of the W-Sn deposits in the Nanling region (include southern Jiangxi Province, southern Hunan Province, northern Guangdong Province and eastern Guangxi Zhuang Autonomous Region) exhibit numerous episodes. The mineralization in the Nanling region mainly occurred at (240-210) Ma, (170-150) Ma and (130-90) Ma. The tungsten-tin deposits in this region are centered by the largest scale in southern Jiangxi Province and southern Hunan Province, and become small in the east, west, south and north directions. This displays a zonal arrangement and temporal and spatial distribution regularity. Integrated with the latest research results, it is concluded that the W-Sn mineralization in southern Jiangxi Province and its adjacent areas corresponds to the second large-scale mineralization in South China. The Indosinian W-Sn mineralization formed under the extensional tectonic regime between collisional compressional stages, while the Yanshanian large-scale petrogenetic and metallogenic processes occurred in the Jurassic intraplate extensional geodynamic setting of lithosphere extension.
基金This study was supported by the National Natural Science Foundation of China grants 49572146 and 49772147 and the Foundation for Development of Science and Technology in Geology grant 9514.
文摘: Using the single—zircon evaporation technique and U—Pb method, the authors have conducted an isotope geochonological study of the Huilanshan granulite and Shima garnet-bearing plagioclase gneiss (“country rocks” of the Shima eclogite) in the Dabie Mountains. The study shows that these rocks have peak metamorphic ages of 443–455 Ma, which are essentially consistent with that of the Caledonian high—ultrahigh pressure eclogites. This indicates the existence of the Caledonian collisional orogeny in the Dabie Mountains.
基金support from the Ministry Science Technology of the People's Republic of China (Grant 2006FY120300-12)the China Geological Survey (Grant 1212010811057)
文摘The demarcation of the Lower-Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower-Middle Triassic strata of different types, from platform to basin facies,are well developed in Southwest China. This is favorable for the study of the Olenekian-Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3,Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N, triangularis Assemblage-Zone; 5,Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early-Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N, triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower-Middle Triassic boundary. The Lower-Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section,whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower-Middle Triassic boundary in South China. Based on the analysis of high -precision and high-sensitivity Secondary Ion Mass Spectrum data ,the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9 Ma (2σ), which is a directly measured zircon U-Pb age of the Lower-Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower-Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower-Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower-Middle Triassic boundary.
基金supported by a key project of resources and environment of the Chinese Academy of Sciences(No:KZ951-B1-404)the Project 211 of the China University of Geosciences
文摘The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding-Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonarites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoprotero/oic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.
文摘There are five major geological events in Precambrian complex, Taihangshan region determined by researching into geology and isotopic chronology of the complex. Basaltic magma erupted and quartz-dioritic to tonalitic magma intruded in earlier neo-Archaean, which formed hornblende-plagiogneiss of Fuping gneiss complex and metamorphic mafic rock enclaves in TTGgneiss complex. Granulite facies metamorphism and emplacement of biotite-plagiogneiss occurred in late neo-Archaean. Extension and uplifting from the end of neo-Archaean to Paleoproterozoic era formed Chengnanzhuang large extensional deformation zones and metamorphic mafic veins emplaced into the deformation zones. Remobilization of Precambrian complex and tectonic uplifting in late Paleoproterozoic era formed Longquanguan ductile shear zone and emplacement of Nanying gneiss. Occurrence of regional granite pegmatite at the end of Paleoproterozoic era means the end of the Lüliang movement. gneiss complex. Granulite facies metamorphism and emplacement of biotite-plagiogneiss occurred in late neo-Archaean. Extension and uplifting from the end of neo-Archaean to Paleoproterozoic era formed Chengnanzhuang large extensional deformation zones and metamorphic mafic veins emplaced into the deformation zones. Remobilization of Precambrian complex and tectonic uplifting in late Paleoproterozoic era formed Longquanguan ductile shear zone and emplacement of Nanying gneiss. Occurrence of regional granite pegmatite at the end of Paleoproterozoic era means the end of the Lüliang movement.