When the thermal environment is under heated conditions, short-wavelength solar radiation shows a strong influence on the human body and the heat is accumulated in the human body. In order to demonstrate the effect of...When the thermal environment is under heated conditions, short-wavelength solar radiation shows a strong influence on the human body and the heat is accumulated in the human body. In order to demonstrate the effect of the short-wavelength solar radiation absorptivity of clothing on physiological temperature in an outdoor space, the relationship between the thermal environment evaluation index, ETFe, and the thermal sensory perceptions of the human body was investigated. A significant temperature difference of 2.7°C was shown for an ETFe that was thermally neutral (neither hot nor cold). The effect of short-wavelength solar radiation absorptivity was strongly apparent in ETFe when direct solar radiation was strong and in warmer outdoor spaces. In an outdoor space where the effect of the sky factor and albedo was strong, the setting of the short-wavelength solar radiation absorptivity was demonstrated to greatly impact the estimation of perceived and physiological temperature. When interviewing subjects on clothing in an outdoor space, it is essential to obtain the hue of clothing.展开更多
To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,...To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...展开更多
In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions ...In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions were obtained.The diameter of the projectile is 3-5 mm,the impact velocity is 3.13-6.58 km/s,and the chamber pressure is 0.56-990 Pa.The spectrum of ejected debris cloud in the 250-310 nm band were obtained using a transient spectral measurement system and a multi-channel radiometer measurement system.The test results reveal that the flash radiation intensity increases as a power function with the kinetic energy of the impact.Furthermore,the peak value of the line spectrum decreases as the chamber vacuum degree increases,while the radiation width gradually expands.The line spectrum in the spectral characterization curve corresponds to the ejected debris clouds splitting phase,which does not produce significant line spectrum during material fragmentation and is dominated by the continuum spectrum produced by blackbody radiation.There will appear one or three characteristic peaks in the flash radiation time curve,the first and second peaks correspond to the penetration phase and the third peak corresponds to the expansion phase of the ejected debris clouds on the time scale,the first and second peaks are more sensitive to the chamber vacuum degree,and when the pressure is higher than 99 Pa,the first and second characteristic peaks will disappear.The radiant heat attenuation of the flash under different impact conditions is significantly different,the attenuation exponent has a power function relationship with the impact velocity and the chamber vacuum degree,while the attenuation exponent has a linear relationship with the diameter of the projectile,the specific expression of the attenuation exponent is obtained by fitting.The findings from this research can serve as a valuable reference for remote diagnostic technologies based on flash radiation characteristics.展开更多
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ...Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.展开更多
We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modificatio...We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modifications to the intrinsic integral, we perfectly assess the radiation field present in the adjacent medium of the waveguide and, thus, follow the evolution of the optical coupling from the taper thin film to the substrate and cladding until there is a total energy transfer. The new model that is introduced can be used to evaluate electromagnetic field distribution in three mediums that constitute any nonuniform optical couplers presenting great or low wedge angles.展开更多
In the present work, based on publications dedicated to ^natGd natural gadolinium isotopes, characteristics of secondary particles are analysed in details for various neutron-induced reactions. Characteristics of the ...In the present work, based on publications dedicated to ^natGd natural gadolinium isotopes, characteristics of secondary particles are analysed in details for various neutron-induced reactions. Characteristics of the secondary particles produced in these reactions that make significant contribution to absorbed dose are estimated. It is also established that the main contribution to the absorbed dose is made by secondary particles produced in interactions of neutrons and ^155Gd and ^157Gd isotopes. From comparison of gamma-radiation spectra it is defined that the amount of γ-quanta with energies 0-400 keV (i.e. effective γ-quanta) produced in the (n,γ)-reaction by ^155Gd is higher than that by ^157Gd. Compared spectra of other particles (internal conversion electrons, Auger electrons, x-ray radiation) have shown that earlier used average values of their energy must be defined more precisely. When biological objects are irradiated for approximately 30 minutes by epithermal neutrons in the ^natGd NCT (Gadolinium-based neutron-capture therapy), one should take into account energies of secondary particles produced by ^152Gd, ^154Gd, ^156Gd, ^158Gd and ^160Gd isotopes as they have high linear energy transfer (LET). It is demonstrated that when combined, all these secondary particles can make significant contribution to the absorbed dose at neutron-irradiation of biological objects by the ^natGd NCT technique.展开更多
Diffuse solar radiation models play an extremely important role in solar photothermal utilization,resource assess-ment and energy consumption simulation,etc.The accuracy of these diffuse solar radiation models usually...Diffuse solar radiation models play an extremely important role in solar photothermal utilization,resource assess-ment and energy consumption simulation,etc.The accuracy of these diffuse solar radiation models usually need to be evaluated by various statistical parameters.Among these statistical parameters,the Global Performance In-dex(GPI)has been extensively employed in recent years because of its comprehensiveness and wide applicability.This paper takes five cities in China as representatives of 5 typical climate regions,and 12 solar scattered radia-tion models are fitted with the meteorological data of 5 cities.Based on the comparative analysis of the existing GPI calculation methods,this paper points out that there are some defects in the existing GPI,and modifies the existing GPI based on the comprehensive consideration of statistical parameters,normalization preprocessing of statistical parameters,unified evaluation direction of parameters,weight redistribution of statistical parameters,and adjustment of extreme coefficient.12 types of new GPI are established in this paper,and the performance of diffuse solar radiation models are compared based on these GPI.The rationality of GPI corrective measures is analyzed by means of the method reasonable index(MRI).The results show that the GPI calculation method(N10)which takes five corrective measures has the best performance,and the accuracy of the existing GPI can be improved by 13.33 to 65%.展开更多
During the industrial fermentation process in the production of fuel ethanol, yeasts are subject to several stressing conditions. The survival and the permanence of strains introduced in the process correlate with the...During the industrial fermentation process in the production of fuel ethanol, yeasts are subject to several stressing conditions. The survival and the permanence of strains introduced in the process correlate with the capability of these yeasts in resisting to physical and chemical stresses, as well as their recovering ability to compete with contaminating micro-organisms commonly present in this industrial process. We aim at the selection of Saccharomyces cere visiae strains having this capability and ability. In this sense, cultivations of strains with industrial interest were irradiated with gammas ray at a wide dose interval. Growing curves for the strains were analyzed by means of their relative growth, a new concept here introduced, which allows a better understanding of the growing and recovering processes following radiative stress. It was found that gamma radiation could be used as an alternative method to quantify growing capabilities of S. cerevisiae strains under stressing conditions. It was also shown that this radiological method could be utilized as an additional procedure to select best robust industrial strains. This radiological method simplifies traditional analysis of strain viability, by avoiding the great number of necessary and consecutive fermentation assays.展开更多
γ-ray radiation-induced grafting strategy was first employed to immobilize 4-aminobenzo-15-crown-5 onto a covalent organic framework(COF).This endeavor culminated in the successful synthesis of a class of two-dimensi...γ-ray radiation-induced grafting strategy was first employed to immobilize 4-aminobenzo-15-crown-5 onto a covalent organic framework(COF).This endeavor culminated in the successful synthesis of a class of two-dimensional crown ether-modified COFs(named[15C5]n%-(TzDa-G-x%)),marking the maiden utilization of COFs in the realm of^(6)Li/^(7)Li isotope separation.These COFs exhibited swifter adsorption kinetics than alternative adsorbents.Among them,[15C5]_(57%)-(TzDa-G-50%)with its excellent crystallinity,porosity,and stability exhibited the best performance in Li+adsorption and^(6)Li/^(7)Li isotope separation.The Li+adsorption in acetonitrile achieved a capacity of 3.6 mg·g^(−1)within 30 min and a saturation capacity of 7.3 mg·g^(−1).The single-stage separation factor of^(6)Li/^(7)Li isotopes was 1.014±0.001.The results of dynamic adsorption column experiments showed that the packed column made of[15C5]_(57%)-(TzDa-G-50%)maintained stable performance during four cycles of Li+adsorptionelution,with over 99%Li+removal rate in acetonitrile.This crown ether-modified COF has potential application in^(6)Li/^(7)Li isotope separation,and this radiation-assisted synthesis strategy is expected to become universal in the modification of COFs for diverse applications.展开更多
In the environment of space radiation, the high-energy charged particles or high-energy photons acting on a spacecraft can cause either temporary device degradation or permanent failure. The traditional probability mo...In the environment of space radiation, the high-energy charged particles or high-energy photons acting on a spacecraft can cause either temporary device degradation or permanent failure. The traditional probability model is difficult to obtain reliable estimation of unit radiation resistance performance with small samples. Considering that different products will change differently after high-energy particle radiation, we construct a model based on the gamma degradation process. This model can efficiently describe the law of unit radiation resistance variation with the total radiation dose levels under the effect of the total dose and displacement damage. Finally, the proposed model is used to assess the anti-radiation performance of the N-channel power MOSFET device STRH60N20FSY3 produced by STM to obtain average unit radiation resistance, survival probability, survival function, etc.展开更多
This study aims to estimate monthly averaged daily horizontal global solar radiation.Measured climatological data collected at twelve major cities located across Libya’s map were used to establish 7 different empiric...This study aims to estimate monthly averaged daily horizontal global solar radiation.Measured climatological data collected at twelve major cities located across Libya’s map were used to establish 7 different empirical models.The empirical coefficients of the models were calculated using the least square method.The accuracy of the models was evaluated using different statistical criteria such as Taylor diagram,mean absolute percentage error,MAPE,and root mean square error,RMSE.The results indicated that the sunshine duration-based models are more accurate than air temperature-based models,and the best performance was obtained by the quadratic regression model for all twelve Libyan cities.Moreover,this regression model can be used for the prediction of monthly mean horizontal global solar radiation at a specific site across Libya’s regions with minimum error.Furthermore,the results of the global solar irradiance produced by this method can be used for designing solar systems applications.展开更多
We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics a...We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics as optical coupler. The model is based on numerical evaluation of electromagnetic wave by applying an intrinsic field integral to evaluate the field behaviour inside the optical waveguide. To analyse the field distribution inside the non-uniform waveguide and predict the beam propagation of optical energy involved in the propagation process, it is necessary to track the motion of any observation point along the tapered waveguide itself. Physically, the rays of the spectrum undergo reflections on the waveguide boundaries until the cut-off occurs and the phenomena of radiation begin. The numerical results show good agreement with those obtained by classical methods of evaluation used bv other works.展开更多
Single-event effects of nano scale integrated circuits are investigated. Evaluation methods for singleevent transients, single-event upsets, and single-event functional interrupts in nano circuits are summarized and c...Single-event effects of nano scale integrated circuits are investigated. Evaluation methods for singleevent transients, single-event upsets, and single-event functional interrupts in nano circuits are summarized and classified in detail. The difficulties in SEE testing are discussed as well as the development direction of test technology, with emphasis placed on the experimental evaluation of a nano circuit under heavy ion, proton, and laser irradiation. The conclusions in this paper are based on many years of testing at accelerator facilities and our present understanding of the mechanisms for SEEs, which have been well verified experimentally.展开更多
Land surface all-wave net radiation(R_(n))is crucial in determining Earth’s climate by contributing to the surface radiation budget.This study evaluated seven satellite and three reanalysis long-term land surface R_(...Land surface all-wave net radiation(R_(n))is crucial in determining Earth’s climate by contributing to the surface radiation budget.This study evaluated seven satellite and three reanalysis long-term land surface R_(n)products under different spatial scales,spatial and temporal variations,and different conditions.The results showed that during 2000-2018,Global Land Surface Satellite Product(GLASS)-Moderate Resolution Imaging Spectroradiometer(MODIS)performed the best(RMSE=25.54 Wm^(-2),bias=-1.26 Wm^(-2)),followed by ERA5(the fifth-generation of European Centre for Medium-Range Weather Forecast Reanalysis)(RMSE=32.17 Wm^(-2),bias=-4.88 Wm^(-2))and GLASS-AVHRR(Advanced Very-High-Resolution Radiometer)(RMSE=33.10 Wm^(-2),bias=4.03 Wm^(-2)).During 1983-2018,GLASS-AVHRR and ERA5 ranked top and performed similarly,with RMSE values of 31.70 and 33.08 Wm^(-2)and biases of-4.56 and 3.48 Wm^(-2),respectively.The averaged multi-annual mean R_(n)over the global land surface of satellite products was higher than that of reanalysis products by about 10~30 Wm^(-2).These products differed remarkably in long-term trends variations,particularly pre-2000,but no significant trends were observed.Discrepancies were more frequent in satellite data,while reanalysis products showed smoother variations.Large discrepancies were found in regions with high latitudes,reflectance,and elevation which could be attributed to input radiative components,meteorological variables(e.g.,cloud properties,aerosol optical thickness),and applicability of the algorithms used.While further research is needed for detailed insights.展开更多
Red and white guavas were treated with wax emulsion or irradiation (0.25-2.0 kGy) and kept for 12 days at room temperature. Initiation of rot attack occurred after 3 days which increased significantly during further s...Red and white guavas were treated with wax emulsion or irradiation (0.25-2.0 kGy) and kept for 12 days at room temperature. Initiation of rot attack occurred after 3 days which increased significantly during further storage. In the waxed fruits rottage, weight loss and vitamin loss were significantly less than controls and irradiated ones. Sensory scores decreased with storage time and they ranged 3.7-4.5, 2.1-3.9 and 2.3-2.7 in waxed, radiated and untreated controls respectively, after 12 days storage. Waxing was found to increase the. shelf life of this fruit for 3-4 d while irradiation exhibited no beneficial effects.展开更多
大气氧化能力(AOC)通常是指大气通过氧化过程去除大气中微量气体成分的速率总和。在对流层和近地层大气中,AOC主要表观为对污染气体的清除能力或净化能力,亦称大气氧化性。AOC是地球大气自洁净的核心能力,但一直缺乏对其内涵的深入认知...大气氧化能力(AOC)通常是指大气通过氧化过程去除大气中微量气体成分的速率总和。在对流层和近地层大气中,AOC主要表观为对污染气体的清除能力或净化能力,亦称大气氧化性。AOC是地球大气自洁净的核心能力,但一直缺乏对其内涵的深入认知和对其指标的量化描述。本文作者通过承担国家重点研发计划“区域大气氧化能力与空气质量的定量关系及调控原理”研究等项目,从大气化学基本理论入手,对AOC开展了系列研究,并在其量化表达方面取得了突破性进展。本文将围绕“大气氧化能力量化研究”这一科学问题,对这些进展进行简要的描述。首先在深入认知AOC内涵的基础上,分别从大气化学的热力学和动力学基本原理出发,构建了大气氧化能力表观指数(AOIe)和潜势指数(AOIp),并通过二者归一化指数日变化闭合研究,发现了非均相化学过程对AOC的贡献不容忽视。随着PM2.5污染的加重,无论夏季还是冬季,AOIe亦随之增加,但在冬季AOIp则出现了相反的情景,表现出AOIp的变化受气象条件的影响更大。AOC闭合研究思路用于大气OH自由基的储库分子HONO“未知源”研究,发现了北京大气HONO的重要非均相来源,阐释了MCM(Master Chemical Mechanism)机制对冬季AOC低估的重要原因。AOIp用于预测我国大气臭氧污染潜势格局,发现臭氧光化学生成表观潜势(AOIp_O_(3))与NO_(2)的光解系数[J(NO_(2))]直接相关,全国J(NO_(2))的年均值为4.39×10^(-3)s^(-1),高值区主要分布在四川、贵州、重庆和湖南等地。与其他化学反应氧化性指数对比,AOIe与AOIp组合指数更具准确性、普适性和实用性,可评价已发生的污染过程AOC的变化,亦可预测城市或区域重污染发生的可能性及其变化和格局。展开更多
文摘When the thermal environment is under heated conditions, short-wavelength solar radiation shows a strong influence on the human body and the heat is accumulated in the human body. In order to demonstrate the effect of the short-wavelength solar radiation absorptivity of clothing on physiological temperature in an outdoor space, the relationship between the thermal environment evaluation index, ETFe, and the thermal sensory perceptions of the human body was investigated. A significant temperature difference of 2.7°C was shown for an ETFe that was thermally neutral (neither hot nor cold). The effect of short-wavelength solar radiation absorptivity was strongly apparent in ETFe when direct solar radiation was strong and in warmer outdoor spaces. In an outdoor space where the effect of the sky factor and albedo was strong, the setting of the short-wavelength solar radiation absorptivity was demonstrated to greatly impact the estimation of perceived and physiological temperature. When interviewing subjects on clothing in an outdoor space, it is essential to obtain the hue of clothing.
基金Supported by Special Project of China Meteorological Administrationon Effects of Climate Change on Solar Energy in East ChinaSpecial fund of Meteorological Science and Technology Services inShandong Province in 2006~~
文摘To evaluate scientifically the change of photosynthetic and thermal potential productivity caused by climate variation,based on comparison with mean of previous 30 years(1971-2000),the change of total solar radiation,sunshine hours,photosynthetic active radiation,photosynthetic and thermal potential productivity since 2001 were analyzed through data of radiation,sunshine and temperature in Shandong Province from 1971 to 2007,and the change trend was also tested by Mann-Kendall non-parametric statistical met...
基金supported by the National Natural Science Foundation of China (Grant No.11672278)。
文摘In this study,a series of hypervelocity impact tests were carried out based on a two-stage light gas gun,and the sequence spectrum and radiation evolution data of the impact products under different impact conditions were obtained.The diameter of the projectile is 3-5 mm,the impact velocity is 3.13-6.58 km/s,and the chamber pressure is 0.56-990 Pa.The spectrum of ejected debris cloud in the 250-310 nm band were obtained using a transient spectral measurement system and a multi-channel radiometer measurement system.The test results reveal that the flash radiation intensity increases as a power function with the kinetic energy of the impact.Furthermore,the peak value of the line spectrum decreases as the chamber vacuum degree increases,while the radiation width gradually expands.The line spectrum in the spectral characterization curve corresponds to the ejected debris clouds splitting phase,which does not produce significant line spectrum during material fragmentation and is dominated by the continuum spectrum produced by blackbody radiation.There will appear one or three characteristic peaks in the flash radiation time curve,the first and second peaks correspond to the penetration phase and the third peak corresponds to the expansion phase of the ejected debris clouds on the time scale,the first and second peaks are more sensitive to the chamber vacuum degree,and when the pressure is higher than 99 Pa,the first and second characteristic peaks will disappear.The radiant heat attenuation of the flash under different impact conditions is significantly different,the attenuation exponent has a power function relationship with the impact velocity and the chamber vacuum degree,while the attenuation exponent has a linear relationship with the diameter of the projectile,the specific expression of the attenuation exponent is obtained by fitting.The findings from this research can serve as a valuable reference for remote diagnostic technologies based on flash radiation characteristics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 42188101, and 42241143)the National Key R&D Program of China (Grant Nos. 2022YFF0503700 and 2022YFF0503900)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the Fundamental Research Funds for the Central Universities (Grant No. 2042022kf1012)
文摘Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.
基金co-supported by the University of Sciences and Technology of Oran Mohamed Boudiaf (USTOMB) and the Centre of Satellites Development (CDS), Oran, Algeria
文摘We present in this work a new mathematical model to analyze and evaluate optical phenomena occurring in the nonuniform optical waveguide used in integrated optics as an optical coupler. By introducing some modifications to the intrinsic integral, we perfectly assess the radiation field present in the adjacent medium of the waveguide and, thus, follow the evolution of the optical coupling from the taper thin film to the substrate and cladding until there is a total energy transfer. The new model that is introduced can be used to evaluate electromagnetic field distribution in three mediums that constitute any nonuniform optical couplers presenting great or low wedge angles.
文摘In the present work, based on publications dedicated to ^natGd natural gadolinium isotopes, characteristics of secondary particles are analysed in details for various neutron-induced reactions. Characteristics of the secondary particles produced in these reactions that make significant contribution to absorbed dose are estimated. It is also established that the main contribution to the absorbed dose is made by secondary particles produced in interactions of neutrons and ^155Gd and ^157Gd isotopes. From comparison of gamma-radiation spectra it is defined that the amount of γ-quanta with energies 0-400 keV (i.e. effective γ-quanta) produced in the (n,γ)-reaction by ^155Gd is higher than that by ^157Gd. Compared spectra of other particles (internal conversion electrons, Auger electrons, x-ray radiation) have shown that earlier used average values of their energy must be defined more precisely. When biological objects are irradiated for approximately 30 minutes by epithermal neutrons in the ^natGd NCT (Gadolinium-based neutron-capture therapy), one should take into account energies of secondary particles produced by ^152Gd, ^154Gd, ^156Gd, ^158Gd and ^160Gd isotopes as they have high linear energy transfer (LET). It is demonstrated that when combined, all these secondary particles can make significant contribution to the absorbed dose at neutron-irradiation of biological objects by the ^natGd NCT technique.
基金This research has been supported by National Natural Science Foun-dation of China(Grant No.52178083)Anhui Province Key Labora-tory of Intelligent Building and Building Energy Saving,Anhui Jianzhu University(Grant No.IBES2020KF12)Open Project of State Key Laboratory of Clean Energy Utilization,Zhejiang University(Grant No.ZJUCEU2020024).
文摘Diffuse solar radiation models play an extremely important role in solar photothermal utilization,resource assess-ment and energy consumption simulation,etc.The accuracy of these diffuse solar radiation models usually need to be evaluated by various statistical parameters.Among these statistical parameters,the Global Performance In-dex(GPI)has been extensively employed in recent years because of its comprehensiveness and wide applicability.This paper takes five cities in China as representatives of 5 typical climate regions,and 12 solar scattered radia-tion models are fitted with the meteorological data of 5 cities.Based on the comparative analysis of the existing GPI calculation methods,this paper points out that there are some defects in the existing GPI,and modifies the existing GPI based on the comprehensive consideration of statistical parameters,normalization preprocessing of statistical parameters,unified evaluation direction of parameters,weight redistribution of statistical parameters,and adjustment of extreme coefficient.12 types of new GPI are established in this paper,and the performance of diffuse solar radiation models are compared based on these GPI.The rationality of GPI corrective measures is analyzed by means of the method reasonable index(MRI).The results show that the GPI calculation method(N10)which takes five corrective measures has the best performance,and the accuracy of the existing GPI can be improved by 13.33 to 65%.
文摘During the industrial fermentation process in the production of fuel ethanol, yeasts are subject to several stressing conditions. The survival and the permanence of strains introduced in the process correlate with the capability of these yeasts in resisting to physical and chemical stresses, as well as their recovering ability to compete with contaminating micro-organisms commonly present in this industrial process. We aim at the selection of Saccharomyces cere visiae strains having this capability and ability. In this sense, cultivations of strains with industrial interest were irradiated with gammas ray at a wide dose interval. Growing curves for the strains were analyzed by means of their relative growth, a new concept here introduced, which allows a better understanding of the growing and recovering processes following radiative stress. It was found that gamma radiation could be used as an alternative method to quantify growing capabilities of S. cerevisiae strains under stressing conditions. It was also shown that this radiological method could be utilized as an additional procedure to select best robust industrial strains. This radiological method simplifies traditional analysis of strain viability, by avoiding the great number of necessary and consecutive fermentation assays.
基金the National Natural Science Foundation of China(grant no.U2067212)the National Science Fund for Distinguished Young Scholars(grant no.21925603).
文摘γ-ray radiation-induced grafting strategy was first employed to immobilize 4-aminobenzo-15-crown-5 onto a covalent organic framework(COF).This endeavor culminated in the successful synthesis of a class of two-dimensional crown ether-modified COFs(named[15C5]n%-(TzDa-G-x%)),marking the maiden utilization of COFs in the realm of^(6)Li/^(7)Li isotope separation.These COFs exhibited swifter adsorption kinetics than alternative adsorbents.Among them,[15C5]_(57%)-(TzDa-G-50%)with its excellent crystallinity,porosity,and stability exhibited the best performance in Li+adsorption and^(6)Li/^(7)Li isotope separation.The Li+adsorption in acetonitrile achieved a capacity of 3.6 mg·g^(−1)within 30 min and a saturation capacity of 7.3 mg·g^(−1).The single-stage separation factor of^(6)Li/^(7)Li isotopes was 1.014±0.001.The results of dynamic adsorption column experiments showed that the packed column made of[15C5]_(57%)-(TzDa-G-50%)maintained stable performance during four cycles of Li+adsorptionelution,with over 99%Li+removal rate in acetonitrile.This crown ether-modified COF has potential application in^(6)Li/^(7)Li isotope separation,and this radiation-assisted synthesis strategy is expected to become universal in the modification of COFs for diverse applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.71371067&70901024)Hunan Provincial Natural Science Foundation of China
文摘In the environment of space radiation, the high-energy charged particles or high-energy photons acting on a spacecraft can cause either temporary device degradation or permanent failure. The traditional probability model is difficult to obtain reliable estimation of unit radiation resistance performance with small samples. Considering that different products will change differently after high-energy particle radiation, we construct a model based on the gamma degradation process. This model can efficiently describe the law of unit radiation resistance variation with the total radiation dose levels under the effect of the total dose and displacement damage. Finally, the proposed model is used to assess the anti-radiation performance of the N-channel power MOSFET device STRH60N20FSY3 produced by STM to obtain average unit radiation resistance, survival probability, survival function, etc.
文摘This study aims to estimate monthly averaged daily horizontal global solar radiation.Measured climatological data collected at twelve major cities located across Libya’s map were used to establish 7 different empirical models.The empirical coefficients of the models were calculated using the least square method.The accuracy of the models was evaluated using different statistical criteria such as Taylor diagram,mean absolute percentage error,MAPE,and root mean square error,RMSE.The results indicated that the sunshine duration-based models are more accurate than air temperature-based models,and the best performance was obtained by the quadratic regression model for all twelve Libyan cities.Moreover,this regression model can be used for the prediction of monthly mean horizontal global solar radiation at a specific site across Libya’s regions with minimum error.Furthermore,the results of the global solar irradiance produced by this method can be used for designing solar systems applications.
基金co-supported by the University of Sciences and Technology of Oran Mohamed Boudiaf(USTOMB)the Centre of Satellites Development(CDS),Oran,Algeria
文摘We introduce a mathematical model based on a concept of intrinsic mode in order to analyse and synthesise optical wave propagation and radiation occurring in a non-uniform optical waveguide used in integrated optics as optical coupler. The model is based on numerical evaluation of electromagnetic wave by applying an intrinsic field integral to evaluate the field behaviour inside the optical waveguide. To analyse the field distribution inside the non-uniform waveguide and predict the beam propagation of optical energy involved in the propagation process, it is necessary to track the motion of any observation point along the tapered waveguide itself. Physically, the rays of the spectrum undergo reflections on the waveguide boundaries until the cut-off occurs and the phenomena of radiation begin. The numerical results show good agreement with those obtained by classical methods of evaluation used bv other works.
文摘Single-event effects of nano scale integrated circuits are investigated. Evaluation methods for singleevent transients, single-event upsets, and single-event functional interrupts in nano circuits are summarized and classified in detail. The difficulties in SEE testing are discussed as well as the development direction of test technology, with emphasis placed on the experimental evaluation of a nano circuit under heavy ion, proton, and laser irradiation. The conclusions in this paper are based on many years of testing at accelerator facilities and our present understanding of the mechanisms for SEEs, which have been well verified experimentally.
基金funded by the National Natural Science Foundation of China[grant numbers 42090012 and 41971291].
文摘Land surface all-wave net radiation(R_(n))is crucial in determining Earth’s climate by contributing to the surface radiation budget.This study evaluated seven satellite and three reanalysis long-term land surface R_(n)products under different spatial scales,spatial and temporal variations,and different conditions.The results showed that during 2000-2018,Global Land Surface Satellite Product(GLASS)-Moderate Resolution Imaging Spectroradiometer(MODIS)performed the best(RMSE=25.54 Wm^(-2),bias=-1.26 Wm^(-2)),followed by ERA5(the fifth-generation of European Centre for Medium-Range Weather Forecast Reanalysis)(RMSE=32.17 Wm^(-2),bias=-4.88 Wm^(-2))and GLASS-AVHRR(Advanced Very-High-Resolution Radiometer)(RMSE=33.10 Wm^(-2),bias=4.03 Wm^(-2)).During 1983-2018,GLASS-AVHRR and ERA5 ranked top and performed similarly,with RMSE values of 31.70 and 33.08 Wm^(-2)and biases of-4.56 and 3.48 Wm^(-2),respectively.The averaged multi-annual mean R_(n)over the global land surface of satellite products was higher than that of reanalysis products by about 10~30 Wm^(-2).These products differed remarkably in long-term trends variations,particularly pre-2000,but no significant trends were observed.Discrepancies were more frequent in satellite data,while reanalysis products showed smoother variations.Large discrepancies were found in regions with high latitudes,reflectance,and elevation which could be attributed to input radiative components,meteorological variables(e.g.,cloud properties,aerosol optical thickness),and applicability of the algorithms used.While further research is needed for detailed insights.
文摘Red and white guavas were treated with wax emulsion or irradiation (0.25-2.0 kGy) and kept for 12 days at room temperature. Initiation of rot attack occurred after 3 days which increased significantly during further storage. In the waxed fruits rottage, weight loss and vitamin loss were significantly less than controls and irradiated ones. Sensory scores decreased with storage time and they ranged 3.7-4.5, 2.1-3.9 and 2.3-2.7 in waxed, radiated and untreated controls respectively, after 12 days storage. Waxing was found to increase the. shelf life of this fruit for 3-4 d while irradiation exhibited no beneficial effects.
文摘大气氧化能力(AOC)通常是指大气通过氧化过程去除大气中微量气体成分的速率总和。在对流层和近地层大气中,AOC主要表观为对污染气体的清除能力或净化能力,亦称大气氧化性。AOC是地球大气自洁净的核心能力,但一直缺乏对其内涵的深入认知和对其指标的量化描述。本文作者通过承担国家重点研发计划“区域大气氧化能力与空气质量的定量关系及调控原理”研究等项目,从大气化学基本理论入手,对AOC开展了系列研究,并在其量化表达方面取得了突破性进展。本文将围绕“大气氧化能力量化研究”这一科学问题,对这些进展进行简要的描述。首先在深入认知AOC内涵的基础上,分别从大气化学的热力学和动力学基本原理出发,构建了大气氧化能力表观指数(AOIe)和潜势指数(AOIp),并通过二者归一化指数日变化闭合研究,发现了非均相化学过程对AOC的贡献不容忽视。随着PM2.5污染的加重,无论夏季还是冬季,AOIe亦随之增加,但在冬季AOIp则出现了相反的情景,表现出AOIp的变化受气象条件的影响更大。AOC闭合研究思路用于大气OH自由基的储库分子HONO“未知源”研究,发现了北京大气HONO的重要非均相来源,阐释了MCM(Master Chemical Mechanism)机制对冬季AOC低估的重要原因。AOIp用于预测我国大气臭氧污染潜势格局,发现臭氧光化学生成表观潜势(AOIp_O_(3))与NO_(2)的光解系数[J(NO_(2))]直接相关,全国J(NO_(2))的年均值为4.39×10^(-3)s^(-1),高值区主要分布在四川、贵州、重庆和湖南等地。与其他化学反应氧化性指数对比,AOIe与AOIp组合指数更具准确性、普适性和实用性,可评价已发生的污染过程AOC的变化,亦可预测城市或区域重污染发生的可能性及其变化和格局。