Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information belo...Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.展开更多
For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with p...For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with point-normal method, further refinement is achieved by using an improved iterative closest point (ICP) algorithm. Compared with other methods used for mult-view registration, this approach is automatic because no geometric feature, such as line, plane or sphere needs to be extracted from the original point cloud manually. A good initial alignment can be acquired automatically and the registration accuracy and efficiency is proven better than the normal point-point ICP algorithm both experimentally and theoretically.展开更多
In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rap...In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rapid detection for surface thermal deformation. Firstly,the basic principle of the ICP algorithm for registration of a free surface is given,and the shortcomings of the ICP algorithm in the registration of surface are analysed,such as its complex computation,long calculation time,low efficiency,and relatively strict initial registration position. Then an improved FICP algorithm based on design coordinate guidance is proposed. Finally,the FICP algorithm is applied to the fast registration test for the surface thermal deformation of a paraboloid antenna. Results indicate that the approach offers better performance with regard to fast surface registration and the algorithm is more simple,efficient,and easily realized in practical engineering application.展开更多
In order to overcome the defects where the surface of the object lacks sufficient texture features and the algorithm cannot meet the real-time requirements of augmented reality,a markerless augmented reality tracking ...In order to overcome the defects where the surface of the object lacks sufficient texture features and the algorithm cannot meet the real-time requirements of augmented reality,a markerless augmented reality tracking registration method based on multimodal template matching and point clouds is proposed.The method first adapts the linear parallel multi-modal LineMod template matching method with scale invariance to identify the texture-less target and obtain the reference image as the key frame that is most similar to the current perspective.Then,we can obtain the initial pose of the camera and solve the problem of re-initialization because of tracking registration interruption.A point cloud-based method is used to calculate the precise pose of the camera in real time.In order to solve the problem that the traditional iterative closest point(ICP)algorithm cannot meet the real-time requirements of the system,Kdtree(k-dimensional tree)is used under the graphics processing unit(GPU)to replace the part of finding the nearest points in the original ICP algorithm to improve the speed of tracking registration.At the same time,the random sample consensus(RANSAC)algorithm is used to remove the error point pairs to improve the accuracy of the algorithm.The results show that the proposed tracking registration method has good real-time performance and robustness.展开更多
In order to achieve long-term covert precise navigation for an underwater vehicle,the shortcomings of various underwater navigation methods used are analyzed.Given the low navigation precision of underwater mapmatchin...In order to achieve long-term covert precise navigation for an underwater vehicle,the shortcomings of various underwater navigation methods used are analyzed.Given the low navigation precision of underwater mapmatching aided inertial navigation based on singlegeophysical information,a model of an underwater mapmatching aided inertial navigation system based on multigeophysical information(gravity,topography and geomagnetism)is put forward,and the key technologies of map-matching based on multi-geophysical information are analyzed.Iterative closest contour point(ICCP)mapmatching algorithm and data fusion based on Dempster-Shafer(D-S)evidence theory are applied to navigation simulation.Simulation results show that accumulation of errors with increasing of time and distance are restrained and fusion of multi-map-matching is superior to any single-map-matching,which can effectively determine the best match of underwater vehicle position and improve the accuracy of underwater vehicle navigation.展开更多
基金supported by the National Natural Science Foundation of China,Grant Number 41961060by the Program for Innovative Research Team (in Science and Technology) in the University of Yunnan Province,Grant Number IRTSTYN+1 种基金by the Scientific Research Fund Project of the Education Department of Yunnan Province,Grant Numbers 2020J0256 and 2021J0438by the Postgraduate Scientific Research and Innovation Fund Project of Yunnan Normal University,Grant Number YJSJJ21-A08
文摘Airborne laser scanning(ALS)and terrestrial laser scanning(TLS)has attracted attention due to their forest parameter investigation and research applications.ALS is limited to obtaining fi ne structure information below the forest canopy due to the occlusion of trees in natural forests.In contrast,TLS is unable to gather fi ne structure information about the upper canopy.To address the problem of incomplete acquisition of natural forest point cloud data by ALS and TLS on a single platform,this study proposes data registration without control points.The ALS and TLS original data were cropped according to sample plot size,and the ALS point cloud data was converted into relative coordinates with the center of the cropped data as the origin.The same feature point pairs of the ALS and TLS point cloud data were then selected to register the point cloud data.The initial registered point cloud data was fi nely and optimally registered via the iterative closest point(ICP)algorithm.The results show that the proposed method achieved highprecision registration of ALS and TLS point cloud data from two natural forest plots of Pinus yunnanensis Franch.and Picea asperata Mast.which included diff erent species and environments.An average registration accuracy of 0.06 m and 0.09 m were obtained for P.yunnanensis and P.asperata,respectively.
基金the National Natural Science Foundation of China (59990470) and the NationalOutstanding Young Scientist Foundation of China (
文摘For reverse engineering a CAD model, it is necessary to integrate measured points from several views of an object into a common reference frame. Given a rough initial alignment of point cloud in different views with point-normal method, further refinement is achieved by using an improved iterative closest point (ICP) algorithm. Compared with other methods used for mult-view registration, this approach is automatic because no geometric feature, such as line, plane or sphere needs to be extracted from the original point cloud manually. A good initial alignment can be acquired automatically and the registration accuracy and efficiency is proven better than the normal point-point ICP algorithm both experimentally and theoretically.
基金Supported by the National Natural Science Foundation of China(No.51474217,41501562)the Open Fund Program of Henan Engineering Laboratory of Pollution Control and Coal Chemical Resources Comprehensive Utilization(No.502002-B07,502002-A04)
文摘In order to obtain and master the surface thermal deformation of paraboloid antennas,a fast iterative closest point( FICP) algorithm based on design coordinate guidance is proposed,which can satisfy the demands of rapid detection for surface thermal deformation. Firstly,the basic principle of the ICP algorithm for registration of a free surface is given,and the shortcomings of the ICP algorithm in the registration of surface are analysed,such as its complex computation,long calculation time,low efficiency,and relatively strict initial registration position. Then an improved FICP algorithm based on design coordinate guidance is proposed. Finally,the FICP algorithm is applied to the fast registration test for the surface thermal deformation of a paraboloid antenna. Results indicate that the approach offers better performance with regard to fast surface registration and the algorithm is more simple,efficient,and easily realized in practical engineering application.
基金This work was supported by National Natural Science Foundation of China(No.61125101).
文摘In order to overcome the defects where the surface of the object lacks sufficient texture features and the algorithm cannot meet the real-time requirements of augmented reality,a markerless augmented reality tracking registration method based on multimodal template matching and point clouds is proposed.The method first adapts the linear parallel multi-modal LineMod template matching method with scale invariance to identify the texture-less target and obtain the reference image as the key frame that is most similar to the current perspective.Then,we can obtain the initial pose of the camera and solve the problem of re-initialization because of tracking registration interruption.A point cloud-based method is used to calculate the precise pose of the camera in real time.In order to solve the problem that the traditional iterative closest point(ICP)algorithm cannot meet the real-time requirements of the system,Kdtree(k-dimensional tree)is used under the graphics processing unit(GPU)to replace the part of finding the nearest points in the original ICP algorithm to improve the speed of tracking registration.At the same time,the random sample consensus(RANSAC)algorithm is used to remove the error point pairs to improve the accuracy of the algorithm.The results show that the proposed tracking registration method has good real-time performance and robustness.
基金This work was supported by the National Defense Pre-Research Foundation of China.
文摘In order to achieve long-term covert precise navigation for an underwater vehicle,the shortcomings of various underwater navigation methods used are analyzed.Given the low navigation precision of underwater mapmatching aided inertial navigation based on singlegeophysical information,a model of an underwater mapmatching aided inertial navigation system based on multigeophysical information(gravity,topography and geomagnetism)is put forward,and the key technologies of map-matching based on multi-geophysical information are analyzed.Iterative closest contour point(ICCP)mapmatching algorithm and data fusion based on Dempster-Shafer(D-S)evidence theory are applied to navigation simulation.Simulation results show that accumulation of errors with increasing of time and distance are restrained and fusion of multi-map-matching is superior to any single-map-matching,which can effectively determine the best match of underwater vehicle position and improve the accuracy of underwater vehicle navigation.