Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibr...This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.展开更多
In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchr...In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.展开更多
The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achi...The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example.展开更多
In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-IL...In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-ILC) system is analyzed and an error boundary of the stable output of the R-ILC system is obtained for the boundary stochastic noise channel. Finally, we obtain some rules to reduce the fluctuation caused by wireless channel noise through the analysis results for fluctuation boundary. The simulation results prove the proposed rule is correct.展开更多
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad...An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.展开更多
In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertaintie...In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.展开更多
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin...The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.展开更多
Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, includ...Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, including passive and active types, can cause data loss or fragment due to various factors. Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection, storage, transmission, and processing, such as data dropouts, delays, disordering, and limited transmission bandwidth. Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied, such as sampling and quantization. This survey emphasizes two aspects: the first one is how to guarantee good learning performance and tracking performance with passive incomplete data, and the second is how to balance the control performance index and data demand by active means. The promising research directions along this topic are also addressed, where data robustness is highly emphasized. This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance, quantitatively, and promote further developments of ILC theory. Index Terms--Data dropout, data robustness, incomplete in- formation, iterative learning controi(ILC), quantized control, sampled control, varying lengths.展开更多
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no...A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.展开更多
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (...An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.展开更多
Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control e...Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n...In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.展开更多
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ...An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.展开更多
Stochastic iterative learning control(ILC) is designed for solving the tracking problem of stochastic linear systems through fading channels. Consequently, the signals used in learning control algorithms are faded in ...Stochastic iterative learning control(ILC) is designed for solving the tracking problem of stochastic linear systems through fading channels. Consequently, the signals used in learning control algorithms are faded in the sense that a random variable is multiplied by the original signal. To achieve the tracking objective, a two-dimensional Kalman filtering method is used in this study to derive a learning gain matrix varying along both time and iteration axes. The learning gain matrix minimizes the trace of input error covariance. The asymptotic convergence of the generated input sequence to the desired input value is strictly proved in the mean-square sense. Both output and input fading are accounted for separately in turn, followed by a general formulation that both input and output fading coexists.Illustrative examples are provided to verify the effectiveness of the proposed schemes.展开更多
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc...A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.展开更多
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a...This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.展开更多
In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To...In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,展开更多
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975037,52375075).
文摘This paper proposes a modified iterative learning control(MILC)periodical feedback-feedforward algorithm to reduce the vibration of a rotor caused by coupled unbalance and parallel misalignment.The control of the vibration of the rotor is provided by an active magnetic actuator(AMA).The iterative gain of the MILC algorithm here presented has a self-adjustment based on the magnitude of the vibration.Notch filters are adopted to extract the synchronous(1×Ω)and twice rotational frequency(2×Ω)components of the rotor vibration.Both the notch frequency of the filter and the size of feedforward storage used during the experiment have a real-time adaptation to the rotational speed.The method proposed in this work can provide effective suppression of the vibration of the rotor in case of sudden changes or fluctuations of the rotor speed.Simulations and experiments using the MILC algorithm proposed here are carried out and give evidence to the feasibility and robustness of the technique proposed.
基金supported by General Program (No. 60774022)State Key Program (No. 60834001) of National Natural Science Foundation of China
文摘In this paper, the stability of iterative learning control with data dropouts is discussed. By the super vector formulation, an iterative learning control (ILC) system with data dropouts can be modeled as an asynchronous dynamical system with rate constraints on events in the iteration domain. The stability condition is provided in the form of linear matrix inequalities (LMIS) depending on the stability of asynchronous dynamical systems. The analysis is supported by simulations.
基金supported by the National Natural Science Foundation of China (61203065 60834001)the Program of Open Laboratory Foundation of Control Engineering Key Discipline of Henan Provincial High Education (KG 2011-10)
文摘The iterative learning control (ILC) has been demon-strated to be capable of considerably improving the tracking perfor-mance of systems which are affected by the iteration-independent disturbance. However, the achievable performance is greatly degraded when iteration-dependent, stochastic disturbances are pre-sented. This paper considers the robustness of the ILC algorithm for the nonlinear system in presence of stochastic measurement disturbances. The robust convergence of the P-type ILC algorithm is firstly addressed, and then an improved ILC algorithm with a decreasing gain is proposed. Theoretical analyses show that the proposed algorithm can guarantee that the tracking error of the nonlinear system tends to zero in presence of measurement dis-turbances. The analysis is also supported by a numerical example.
基金Project supported by the Innovation Foundation of the Education Commission of Shanghai Municipality (Grant No.09ZZ89)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ223110)
文摘In this paper, the iterative learning control problem is considered for a class of remote control system over wireless network communication channel. The control performance of remote iterative learning control (R-ILC) system is analyzed and an error boundary of the stable output of the R-ILC system is obtained for the boundary stochastic noise channel. Finally, we obtain some rules to reduce the fluctuation caused by wireless channel noise through the analysis results for fluctuation boundary. The simulation results prove the proposed rule is correct.
基金supported by National Natural Science Foundation of China (No. 72103676)partially supported by the Fundamental Research Funds for the Central Universities
文摘An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme.
基金supported by the Third Level of Hangzhou 131 Young Talent Cultivation Plan Funding2018 Soft Science Research Project of Zhejiang Provincial Science and Technology Department Zhejiang Province Construction and participate in the“The Belt and Road”Technology Innovation Community Path Research(2018C35029)
文摘In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertainties. An iterative learning controller, together with a state observer and a fully-saturated learning mechanism, through Lyapunov-like synthesis, is designed to deal with time-varying parametric uncertainties. The estimations for outputs, instead of system outputs themselves, are applied to form the error equation, which helps to establish convergence of the system outputs to the desired ones. This method is then extended to repetitive learning controller design. The boundedness of all the signals in the closed-loop is guaranteed and asymptotic convergence of both the state estimation error and the tracking error is established in both cases of ILC and RLC. Numerical results are presented to verify the effectiveness of the proposed methods.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China(61673045)Beijing Natural Science Foundation(4152040)
文摘Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, including passive and active types, can cause data loss or fragment due to various factors. Passive incomplete information refers to incomplete data and information caused by practical system limitations during data collection, storage, transmission, and processing, such as data dropouts, delays, disordering, and limited transmission bandwidth. Active incomplete information refers to incomplete data and information caused by man-made reduction of data quantity and quality on the premise that the given objective is satisfied, such as sampling and quantization. This survey emphasizes two aspects: the first one is how to guarantee good learning performance and tracking performance with passive incomplete data, and the second is how to balance the control performance index and data demand by active means. The promising research directions along this topic are also addressed, where data robustness is highly emphasized. This survey is expected to improve understanding of the restrictive relationship and trade-off between incomplete data and tracking performance, quantitatively, and promote further developments of ILC theory. Index Terms--Data dropout, data robustness, incomplete in- formation, iterative learning controi(ILC), quantized control, sampled control, varying lengths.
基金Project(2007AA04Z144) supported by the National High-Tech Research and Development Program of ChinaProject(2007421119) supported by the China Postdoctoral Science Foundation
文摘A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.
基金supported by National Natural Science Foundation of China(No.60804021,No.60702063)
文摘An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20091102120038)
文摘Iterative Learning Control (ILC) captures interests of many scholars because of its capability of high precision control implement without identifying plant mathematical models, and it is widely applied in control engineering. Presently, most ILC algorithms still follow the original ideas of ARIMOTO, in which the iterative-learning-rate is composed by the control error with its derivative and integral values. This kind of algorithms will result in inevitable problems such as huge computation, big storage capacity for algorithm data, and also weak robust. In order to resolve these problems, an improved iterative learning control algorithm with fixed step is proposed here which breaks the primary thought of ARIMOTO. In this algorithm, the control step is set only according to the value of the control error, which could enormously reduce the computation and storage size demanded, also improve the robust of the algorithm by not using the differential coefficient of the iterative learning error. In this paper, the convergence conditions of this proposed fixed step iterative learning algorithm is theoretically analyzed and testified. Then the algorithm is tested through simulation researches on a time-variant object with randomly set disturbance through calculation of step threshold value, algorithm robustness testing,and evaluation of the relation between convergence speed and step size. Finally the algorithm is validated on a valve-serving-cylinder system of a joint robot with time-variant parameters. Experiment results demonstrate the stability of the algorithm and also the relationship between step value and convergence rate. Both simulation and experiment testify the feasibility and validity of the new algorithm proposed here. And it is worth to noticing that this algorithm is simple but with strong robust after improvements, which provides new ideas to the research of iterative learning control algorithms.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.
基金supported by National Natural Science Foundation of China(61807016)Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18-1859)。
文摘In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062) and the National High Technology Research and Development Program of China (2007AA04Z162).
文摘An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.
基金supported by the National Natural Science Foundation of China(61673045)the Fundamental Research Funds for the Central Universities(XK1802-4)
文摘Stochastic iterative learning control(ILC) is designed for solving the tracking problem of stochastic linear systems through fading channels. Consequently, the signals used in learning control algorithms are faded in the sense that a random variable is multiplied by the original signal. To achieve the tracking objective, a two-dimensional Kalman filtering method is used in this study to derive a learning gain matrix varying along both time and iteration axes. The learning gain matrix minimizes the trace of input error covariance. The asymptotic convergence of the generated input sequence to the desired input value is strictly proved in the mean-square sense. Both output and input fading are accounted for separately in turn, followed by a general formulation that both input and output fading coexists.Illustrative examples are provided to verify the effectiveness of the proposed schemes.
基金Supported by the National Natural Science Foundation of China (60404012, 60674064), UK EPSRC (GR/N13319 and GR/R10875), the National High Technology Research and Development Program of China (2007AA04Z193), New Star of Science and Technology of Beijing City (2006A62), and IBM China Research Lab 2007 UR-Program.
文摘A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC.
基金supported by the National Natural Science Foundation of China(61873013,61922007)。
文摘This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.
基金This work was supported by the National Natural Science Foundation of China (No. 60274055)
文摘In the procedure of the steady-state hierarchical optimization with feedback for large-scale industrial processes, a sequence of set-point changes with different magnitudes is carried out on the optimization layer. To improve the dynamic performance of transient response driven by the set-point changes, a filter-based iterative learning control strategy is proposed. In the proposed updating law, a local-symmetric-integral operator is adopted for eliminating the measurement noise of output information,a set of desired trajectories are specified according to the set-point changes sequence, the current control input is iteratively achieved by utilizing smoothed output error to modify its control input at previous iteration, to which the amplified coefficients related to the different magnitudes of set-point changes are introduced. The convergence of the algorithm is conducted by incorporating frequency-domain technique into time-domain analysis. Numerical simulation demonstrates the effectiveness of the proposed strategy,