期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
一种类RNN的改进ISTA稀疏脉冲反褶积
1
作者 潘树林 闫柯 +2 位作者 杨海飞 蒋从元 秦子雨 《石油物探》 EI CSCD 北大核心 2019年第4期533-540,共8页
稀疏脉冲反褶积方法对提高地震资料分辨率有着重要作用,迭代阈值收缩算法(ISTA)是其核心算法,首先利用地震数据提取子波,再利用ISTA求解反射系数.当地震子波提取不准确时,反褶积效果不理想.为此,在ISTA基础上,结合循环神经网络(RNN)中... 稀疏脉冲反褶积方法对提高地震资料分辨率有着重要作用,迭代阈值收缩算法(ISTA)是其核心算法,首先利用地震数据提取子波,再利用ISTA求解反射系数.当地震子波提取不准确时,反褶积效果不理想.为此,在ISTA基础上,结合循环神经网络(RNN)中反向传播(BPTT)的思想,研究形成了一种类RNN的改进ISTA稀疏脉冲反褶积方法.该算法首先使用常规手段从实际地震数据中提取地震子波,构建反褶积的子波字典;然后将构建的地震子波字典作为已知的初始条件,结合ISTA求取的反射系数;再根据BPTT算法思想,将求取的反射系数与子波褶积并与实际数据进行比较,反向修改地震子波;最终,经过多次迭代修改获得合理的地震子波字典,并利用该地震子波字典求解实际地震数据的反射系数序列.为验证算法的有效性,采用不同信噪比的理论地震记录,给定存在较大误差的初始子波,进行了反褶积计算.采用传统的ISTA和类RNN的改进ISTA进行对比处理,结果表明,改进ISTA具有较好的抗噪能力和子波自适应能力,可使实测地震资料的有效频带拓展约1.5倍,能够较好地适应实际地震资料的反褶积处理. 展开更多
关键词 稀疏脉冲反褶积 分辨率 ista 地震子波 信噪比 循环神经网络 反向传播
下载PDF
基于ISTA的混合激励EMT金属探伤系统研究 被引量:1
2
作者 孙春光 何敏 +1 位作者 曾星星 冯肖维 《机电工程》 CAS 北大核心 2020年第12期1393-1399,共7页
针对EMT金属结构探伤中传统传感器结构和算法的图像重建质量不佳问题,对EMT探伤系统的激励方式和图像重建算法进行了研究。通过分析EMT采集数据的原理,设计了混合激励的6线圈传感器,比较了混合激励与单独激励的检测数据量;根据EMT技术... 针对EMT金属结构探伤中传统传感器结构和算法的图像重建质量不佳问题,对EMT探伤系统的激励方式和图像重建算法进行了研究。通过分析EMT采集数据的原理,设计了混合激励的6线圈传感器,比较了混合激励与单独激励的检测数据量;根据EMT技术的数学模型,得到了感应电压与电导率分布之间的关系,构造了混合激励下的灵敏度矩阵;分析了常规EMT图像重建算法的不足,根据金属缺陷的非平滑特征,引入了基于小波变换的迭代软阈值算法;以ANSYS Maxwell软件为仿真平台,采用单独激励和混合激励对不同形状缺陷进行了实验,并使用不同算法获得了重建图像;设计了一套基于迭代软阈值算法的混合激励EMT探伤系统,使用了两种激励方式采集不同缺陷的数据,对比了Tikhonov正则化算法,改进了Landweber迭代算法和迭代软阈值算的图像重建效果。研究结果表明:混合激励的成像效果优于单独激励;在混合激励下,ISTA的图像重建质量要好于其他两种算法。 展开更多
关键词 电磁层析成像 Landweber迭代算法 Tikhonov正则化算法 迭代软阈值算法 金属探伤
下载PDF
基于迭代p阈值算法压缩感知磁共振成像重构
3
作者 杜秀丽 李楷 +1 位作者 刘晋廷 吕亚娜 《计算机仿真》 2024年第2期196-201,共6页
从优化网络结构出发,在基于迭代软阈值网络的压缩感知磁共振成像深度网络基础上,加入由p阈值函数组成的优化模块,进一步优化软阈值函数,以抑制噪声,减少重建误差,从而提高重建质量。上述算法结合了压缩感知磁共振重建和深度学习的优势,... 从优化网络结构出发,在基于迭代软阈值网络的压缩感知磁共振成像深度网络基础上,加入由p阈值函数组成的优化模块,进一步优化软阈值函数,以抑制噪声,减少重建误差,从而提高重建质量。上述算法结合了压缩感知磁共振重建和深度学习的优势,所有参数都是端到端学习得到的,既具有很好的理论可解释性,又具有良好的网络泛化能力。对上述算法与其它算法进行对比,仿真结果表明,所提算法提高了磁共振成像的重建精度,特别对于结构复杂的磁共振图像重建效果更好。 展开更多
关键词 迭代阈值算法 压缩感知 磁共振成像
下载PDF
一种深度学习的波束空间信道估计算法
4
作者 郑娟毅 张庆珏 +2 位作者 董嘉豪 郭梦月 杨溥江 《计算机工程》 CAS CSCD 北大核心 2024年第5期298-305,共8页
在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法... 在时分双工(TDD)毫米波大规模多输入多输出(MIMO)系统中,因为波束空间信道具有稀疏性,导致将低维测量数据重建为原始高维信道时会带来较高的复杂度。针对上行链路,在不考虑稀疏度的情况下,将传统优化算法和基于数据驱动的深度学习方法相结合,提出一种改进的基于深度学习的波束空间信道估计算法。从重建过程入手,通过交替建立梯度下降模块(GDM)和近端映射模块(PMM)来构建网络。首先根据SalehValenzuela信道模型进行理论公式推导并生成信道数据;其次构建一个由传统迭代收缩阈值算法(ISTA)的更新步骤所展开的多层网络,并将数据传输到该网络,每层对应于一次类似ISTA的迭代;最后对训练好的模型进行在线测试,恢复出待估计的信道。构建Py Torch环境,将该算法与正交匹配追踪(OMP)算法、近似消息传递(AMP)算法、可学习的近似消息传递(LAMP)算法、高斯混合LAMP(GM-LAMP)算法进行对比,结果表明:在估计精度方面,所提算法相对表现较好的深度学习算法LAMP、GM-LAMP分别提升约3.07和2.61 d B,较传统算法OMP、AMP分别提升约11.12和9.57 d B;在参数量方面,所提算法较LAMP、GM-LAMP分别减少约39%和69%。 展开更多
关键词 大规模多输入多输出系统 稀疏信道估计 压缩感知 深度学习 迭代收缩阈值算法 无线通信
下载PDF
一种基于深度学习的异常数据清洗算法 被引量:19
5
作者 匡俊搴 赵畅 +2 位作者 杨柳 王海峰 钱骅 《电子与信息学报》 EI CSCD 北大核心 2022年第2期507-513,共7页
在物联网(IoT)中采用合适的异常数据清洗算法能极大地提升数据质量。许多研究人员采用统计学方法或分类聚类等方法对时-空相关数据进行清洗。但这些方法需要额外的先验知识,会给汇聚节点带来额外的计算开销。该文根据低秩-稀疏矩阵分解... 在物联网(IoT)中采用合适的异常数据清洗算法能极大地提升数据质量。许多研究人员采用统计学方法或分类聚类等方法对时-空相关数据进行清洗。但这些方法需要额外的先验知识,会给汇聚节点带来额外的计算开销。该文根据低秩-稀疏矩阵分解模型,提出一种基于深度神经网络的快速异常数据清洗算法,来解决物联网中时-空相关数据的清洗问题。结合感知数据的时-空相关性和异常值的稀疏性,将异常数据清洗问题转换为优化问题,并采用迭代阈值收缩算法(ISTA)求解该优化问题,再将ISTA算法展开成一个固定长度的深度神经网络。实际数据集的实验结果表明,该方法能够自动更新阈值,比传统的ISTA算法收敛速度更快,精度更高。 展开更多
关键词 物联网 异常数据清洗 迭代阈值收缩算法 展开 深度神经网络
下载PDF
基于CUDA的阈值迭代算法并行实现 被引量:3
6
作者 耿旻明 蒋成龙 张冰尘 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2013年第5期676-681,共6页
利用CUDA编程在GPU平台设计并行实现阈值的迭代算法,并应用于稀疏微波成像.仿真实验结果表明,在正确重建信号的前提下,相对于常规的CPU串行计算,采用GPU并行处理能加快运算,提高成像速度.
关键词 稀疏微波成像 阈值迭代算法 计算统一设备架构(CUDA) 并行处理
下载PDF
基于加速Bregman方法和阈值迭代法的联合地震数据重建 被引量:4
7
作者 庞洋 张华 +3 位作者 郝亚炬 彭清 梁爽 韩紫璇 《石油地球物理勘探》 EI CSCD 北大核心 2022年第5期1035-1045,I0002,共12页
地震数据缺失道重建是数据处理的重要环节,但现今大部分重建算法收敛速度慢,计算成本高,难以满足海量数据处理的要求。为此,提出一种将加速线性Bregman方法(ALBM)与阈值迭代法(ISTA)进行联合的快速重建方法,并采用多尺度、多方向曲波变... 地震数据缺失道重建是数据处理的重要环节,但现今大部分重建算法收敛速度慢,计算成本高,难以满足海量数据处理的要求。为此,提出一种将加速线性Bregman方法(ALBM)与阈值迭代法(ISTA)进行联合的快速重建方法,并采用多尺度、多方向曲波变换作为稀疏基。ALBM能从未阈值化的曲波系数得到更多的有效信号,因此在迭代初期收敛速度快;后期因未阈值化的曲波系数带入更多噪声,会降低重建精度。ISTA则一直需要将曲波系数进行阈值化,迭代初期滤除了大部分有效系数,故收敛速度慢;但后期能恢复微弱有效信号,故重建精度较高。为了充分发挥两种算法的优势,文中给出了1~0范围的线性和指数两种加权参数公式,有效地将ALBM与ISTA两种算法进行线性组合,保证在迭代初期ALBM起主要作用,迭代后期ISTA作用大,从而使该联合算法既迭代速度快,且迭代精度高。联合过程中,采用软阈值公式,引入了指数阈值参数公式。理论模拟结果表明,相对于ALBM、ISTA及传统联合方法,所提加速联合方法的计算速度较快,重建效果明显。 展开更多
关键词 地震数据重建 压缩感知 加速线性Bregman算法 阈值迭代 联合算法
下载PDF
基于改进迭代收缩阈值算法的微观3D重建方法
8
作者 伍秋玉 张明新 +1 位作者 刘永俊 郑金龙 《计算机应用》 CSCD 北大核心 2018年第8期2398-2404,共7页
迭代收缩阈值算法(ISTA)求解离焦深度恢复动态优化问题时,采用固定迭代步长,导致算法收敛效率不佳,使得重建的微观3D形貌精度不高。为此,提出一种基于加速算子梯度估计和割线线性搜索的方法优化ISTA——FL-ISTA。首先,在每一次迭代中,... 迭代收缩阈值算法(ISTA)求解离焦深度恢复动态优化问题时,采用固定迭代步长,导致算法收敛效率不佳,使得重建的微观3D形貌精度不高。为此,提出一种基于加速算子梯度估计和割线线性搜索的方法优化ISTA——FL-ISTA。首先,在每一次迭代中,由当前点和前一个点的线性组合构成加速算子重新进行梯度估计,更新迭代点;其次,为了改变迭代步长固定的限制,引入割线线性搜索,动态确定每次最优迭代步长;最后,将改进的迭代收缩阈值算法用于求解离焦深度恢复动态优化问题,加快算法的收敛速度、提高微观3D形貌重建的精度。在对标准500 nm尺度栅格的深度信息重建实验中,与ISTA、快速ISTA(FISTA)和单调快速ISTA(MFISTA)相比,FL-ISTA收敛速度均有所提升,重建的深度信息值下降了10个百分点,更接近标准500 nm栅格尺度;与ISTA相比,FL-ISTA重建的微观3D形貌均方差(MSE)和平均误差分别下降了18个百分点和40个百分点。实验结果表明,FL-ISTA有效提升了求解离焦深度恢复动态优化问题的收敛速度,提高了微观3D形貌重建的精度。 展开更多
关键词 微观3D重建 离焦深度恢复 迭代收缩阈值算法 加速算子梯度估计 割线线性搜索
下载PDF
Efficient Concurrent L1-Minimization Solvers on GPUs 被引量:1
9
作者 Xinyue Chu Jiaquan Gao Bo Sheng 《Computer Systems Science & Engineering》 SCIE EI 2021年第9期305-320,共16页
Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp impleme... Given that the concurrent L1-minimization(L1-min)problem is often required in some real applications,we investigate how to solve it in parallel on GPUs in this paper.First,we propose a novel self-adaptive warp implementation of the matrix-vector multiplication(Ax)and a novel self-adaptive thread implementation of the matrix-vector multiplication(ATx),respectively,on the GPU.The vector-operation and inner-product decision trees are adopted to choose the optimal vector-operation and inner-product kernels for vectors of any size.Second,based on the above proposed kernels,the iterative shrinkage-thresholding algorithm is utilized to present two concurrent L1-min solvers from the perspective of the streams and the thread blocks on a GPU,and optimize their performance by using the new features of GPU such as the shuffle instruction and the read-only data cache.Finally,we design a concurrent L1-min solver on multiple GPUs.The experimental results have validated the high effectiveness and good performance of our proposed methods. 展开更多
关键词 Concurrent L1-minimization problem dense matrix-vector multiplication fast iterative shrinkage-thresholding algorithm CUDA GPUS
下载PDF
Fast First-Order Methods for Minimizing Convex Composite Functions
10
作者 Qipeng Li Hongwei Liu Zexian Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第6期46-52,共7页
Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ ... Two new versions of accelerated first-order methods for minimizing convex composite functions are proposed. In this paper, we first present an accelerated first-order method which chooses the step size 1/ Lk to be 1/ L0 at the beginning of each iteration and preserves the computational simplicity of the fast iterative shrinkage-thresholding algorithm. The first proposed algorithm is a non-monotone algorithm. To avoid this behavior, we present another accelerated monotone first-order method. The proposed two accelerated first-order methods are proved to have a better convergence rate for minimizing convex composite functions. Numerical results demonstrate the efficiency of the proposed two accelerated first-order methods. 展开更多
关键词 first-order method iterative shrinkage-thresholding algorithm convex programming adaptive restart composite functions.
下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
11
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部