期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Huber inversion-based reverse-time migration with de-primary imaging condition and curvelet-domain sparse constraint 被引量:2
1
作者 Bo Wu Gang Yao +3 位作者 Jing-Jie Cao Di Wu Xiang Li Neng-Chao Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1542-1554,共13页
Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes... Least-squares reverse-time migration(LSRTM) formulates reverse-time migration(RTM) in the leastsquares inversion framework to obtain the optimal reflectivity image. It can generate images with more accurate amplitudes, higher resolution, and fewer artifacts than RTM. However, three problems still exist:(1) inversion can be dominated by strong events in the residual;(2) low-wavenumber artifacts in the gradient affect convergence speed and imaging results;(3) high-wavenumber noise is also amplified as iteration increases. To solve these three problems, we have improved LSRTM: firstly, we use Hubernorm as the objective function to emphasize the weak reflectors during the inversion;secondly, we adapt the de-primary imaging condition to remove the low-wavenumber artifacts above strong reflectors as well as the false high-wavenumber reflectors in the gradient;thirdly, we apply the L1-norm sparse constraint in the curvelet-domain as the regularization term to suppress the high-wavenumber migration noise. As the new inversion objective function contains the non-smooth L1-norm, we use a modified iterative soft thresholding(IST) method to update along the Polak-Ribie re conjugate-gradient direction by using a preconditioned non-linear conjugate-gradient(PNCG) method. The numerical examples,especially the Sigsbee2 A model, demonstrate that the Huber inversion-based RTM can generate highquality images by mitigating migration artifacts and improving the contribution of weak reflection events. 展开更多
关键词 Least-squares reverse-time migration Huber-norm Sparse constraint Curvelet transform iterative soft thresholding
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部