车载激光扫描可快速获取大场景点云,由于存在视场限制和遮挡,需地面激光点云作补充。车载与地面点云分别位于大地坐标和局部坐标系统,本文提出结合遗传算法(genetic algorithm,GA)和(iterative closed point,ICP)的自动点云配准方法以...车载激光扫描可快速获取大场景点云,由于存在视场限制和遮挡,需地面激光点云作补充。车载与地面点云分别位于大地坐标和局部坐标系统,本文提出结合遗传算法(genetic algorithm,GA)和(iterative closed point,ICP)的自动点云配准方法以统一基准。ICP采用局部优化,效率较高,但依赖初始解;GA为全局优化方法,但效率低。融合策略为当GA配准趋于局部搜索时,采用ICP完成配准。GA配准以地面激光扫描仪内置GPS测量粗略位置限定优化搜索空间。为提高GA配准精度,提出了最大化归一化匹配分数之和(normalized sum of matching scores,NSMS)配准模型。实测数据试验验证了NSMS模型的有效性,GA配准均方根误差(root mean square error,RMSE)为1~5cm;融合配准比GA配准效率高约50%。展开更多
文摘车载激光扫描可快速获取大场景点云,由于存在视场限制和遮挡,需地面激光点云作补充。车载与地面点云分别位于大地坐标和局部坐标系统,本文提出结合遗传算法(genetic algorithm,GA)和(iterative closed point,ICP)的自动点云配准方法以统一基准。ICP采用局部优化,效率较高,但依赖初始解;GA为全局优化方法,但效率低。融合策略为当GA配准趋于局部搜索时,采用ICP完成配准。GA配准以地面激光扫描仪内置GPS测量粗略位置限定优化搜索空间。为提高GA配准精度,提出了最大化归一化匹配分数之和(normalized sum of matching scores,NSMS)配准模型。实测数据试验验证了NSMS模型的有效性,GA配准均方根误差(root mean square error,RMSE)为1~5cm;融合配准比GA配准效率高约50%。