This paper presents a new analytical solution to investigate the mechanism of transient confinedunconfined flow in a confined aquifer induced by pumping with a large rate during mine drainage.The study focuses on unde...This paper presents a new analytical solution to investigate the mechanism of transient confinedunconfined flow in a confined aquifer induced by pumping with a large rate during mine drainage.The study focuses on understanding the impact of non-Darcian effect on flow towards a fully penetrated pumping well.The nonlinear relationship between specific discharge and the hydraulic gradient is described using Izbash's equation.A novel approximate method is developed to linearize the mathematical model,and the solution is derived using the Boltzmann transform.The proposed solution is validated by comparing it with previous works.The findings indicate that increased non-Darcian index,quasi-hydraulic conductivity,and specific storage have negatively affect the development of the unconfined region and aquifer drawdown,as greater turbulence flow accelerates recharge to the pumping well.Drawdown is found to be sensitive to the non-Darcian index,quasi-hydraulic conductivity,while it is unaffected by specific yield and specific storage.The conclusions provide valuable insights for mine drainage and the application of geological and hydrological conditions.展开更多
This paper proposes a simplified analytical solution considering non-Darcian and wellbore storage effect to investigate the pumping flow in a confined aquifer with barrier and recharge boundaries.The mathematical mode...This paper proposes a simplified analytical solution considering non-Darcian and wellbore storage effect to investigate the pumping flow in a confined aquifer with barrier and recharge boundaries.The mathematical modelling for the pumping-induced flow in aquifers with different boundaries is developed by employing image-well theory with the superposition principle,of which the non-Darcian effect is characterized by Izbash’s equation.The solutions are derived by Boltzmann and dimensionless transformations.Then,the non-Darcian effect and wellbore storage are especially investigated according to the proposed solution.The results show that the aquifer boundaries have non-negligible effects on pumping,and ignoring the wellbore storage can lead to an over-estimation of the drawdown in the first 10 minutes of pumping.The higher the degree of non-Darcian,the smaller the drawdown.展开更多
基金supported by the national natural science foundation of China(Grant Numbers 41807197,2017YFC0405900,and 51469002)the natural science foundation of Guangxi(Grant Numbers 2017GXNSFBA198087,2018GXNSFAA 138042,and GuiKeAB17195073)Hebei high level talent funding project(B2018003016).
文摘This paper presents a new analytical solution to investigate the mechanism of transient confinedunconfined flow in a confined aquifer induced by pumping with a large rate during mine drainage.The study focuses on understanding the impact of non-Darcian effect on flow towards a fully penetrated pumping well.The nonlinear relationship between specific discharge and the hydraulic gradient is described using Izbash's equation.A novel approximate method is developed to linearize the mathematical model,and the solution is derived using the Boltzmann transform.The proposed solution is validated by comparing it with previous works.The findings indicate that increased non-Darcian index,quasi-hydraulic conductivity,and specific storage have negatively affect the development of the unconfined region and aquifer drawdown,as greater turbulence flow accelerates recharge to the pumping well.Drawdown is found to be sensitive to the non-Darcian index,quasi-hydraulic conductivity,while it is unaffected by specific yield and specific storage.The conclusions provide valuable insights for mine drainage and the application of geological and hydrological conditions.
基金supported by the National Natural Science Foundation of China (Grant Numbers41807197, 2017YFC0405900, and 51469002)the Natural Science Foundation of Guangxi (Grant Numbers 2017GXNSFBA198087, 2018GXNSFAA138042, and GuiKeAB17195073)Hebei Highlevel Talent Funding Project (B2018003016)。
文摘This paper proposes a simplified analytical solution considering non-Darcian and wellbore storage effect to investigate the pumping flow in a confined aquifer with barrier and recharge boundaries.The mathematical modelling for the pumping-induced flow in aquifers with different boundaries is developed by employing image-well theory with the superposition principle,of which the non-Darcian effect is characterized by Izbash’s equation.The solutions are derived by Boltzmann and dimensionless transformations.Then,the non-Darcian effect and wellbore storage are especially investigated according to the proposed solution.The results show that the aquifer boundaries have non-negligible effects on pumping,and ignoring the wellbore storage can lead to an over-estimation of the drawdown in the first 10 minutes of pumping.The higher the degree of non-Darcian,the smaller the drawdown.