The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with ...The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with three groups of notch depths are tested at the temperature of - 10 and 20 ℃. The experimental results reveal good repeatability in EAM characterization. The tensile strength ratio of SCB to the indirect tensile test (IDT) is at a range of 1.4 to 1.7, and the ultimate strength of EAM is exponentially dependent on the notch depths. At the test temperatures, the critical J-integral value of EAM is much higher than that of hot mix asphalt( HMA) with thermoplastic asphalt binder. The response mode of EAM changes from ductile mode to brittle mode and the fracture energy increases 30% when temperature decreases from 20 to - 10℃, while its critical J-integral value decreases only 15%. It is concluded that EAM has better fracture resistance than thermo-plastic HMA; more fracture energy is needed to initiate cracks in EAM at low temperature, and the cracks propagate more rapidly than at room temperature.展开更多
The definition of J-integral of interfacial crack was introduced. The three-point bending tests were can'ied out to obtain the critical loading values when the interfacial crack initiation occurred between coatings a...The definition of J-integral of interfacial crack was introduced. The three-point bending tests were can'ied out to obtain the critical loading values when the interfacial crack initiation occurred between coatings and substrates. The finite element analysis (FEA) was adopted to analyze the stress distribution in the specimens and compute the J-integral of the interracial crack between LX88A coating and Chinese Q345 steel. The results showed that the average value of critical J-integral is 0.70 N/m, which can be taken as the fracture parameter to evaluate the interracial fracture behavior for the three-point bending specimens of LX88A coating/Q345 steel system.展开更多
The blunting line equation is very important in J-integral testing because of its indispensability in the determination of valid data and JIC value. The blunting line equation in current standard has had a larger rela...The blunting line equation is very important in J-integral testing because of its indispensability in the determination of valid data and JIC value. The blunting line equation in current standard has had a larger relative error in depiction of the crack blunting compared to the experimentally measured results. By analyzing the blunting process of the crack tip according to the D-B model, a new form of blunting line was obtained on the base of the path independence of J-integral, i.e., J=1.25(σs+Sf)/(1+n)·WSZ. Experimental results show that this equation is more precise to describe the crack blunting than those in current standards.展开更多
A series of tests was performed with three-point single-edge-notched-bend (SENB) specimens in a condenser material (Titanium alloy). Results show that the J-integral values of welded joint and HAZ are obviously smalle...A series of tests was performed with three-point single-edge-notched-bend (SENB) specimens in a condenser material (Titanium alloy). Results show that the J-integral values of welded joint and HAZ are obviously smaller than those of the base metal. It signifies that the welding process can result in a reduced toughness of Titanium alloy and the effect of crack orientation on toughness value is not negligible for engineering applications. Besides, the J-integral values of L-T direction specimens are much higher than those of L-S ones. The J-integral values of rolled ring are:JC-R>JC-L>JL-R.展开更多
In this paper a critical review is presented of the history and current state of the art of J-integral resistance curve testing and experimental evaluation methods in conjunction with a discussion of the development o...In this paper a critical review is presented of the history and current state of the art of J-integral resistance curve testing and experimental evaluation methods in conjunction with a discussion of the development of the plane strain fracture toughness test standard ASTM E1820 developed by American Society for Testing and Materials (ASTM). Early research efforts on this topic are reviewed first. These include the J-integral concept, experimental estimates of the J-integral for stationary cracks, load line displacement (LLD) and crack mouth opening displacement (CMOD) based η factor equations, different formulations of J-integral incremental equations for growing cracks, crack growth corrected J-R curve determination, and experimental test methods. Recent developments in J-R curve testing and evaluation are then described, with emphasis on accurate J-integral incremental equations, a normalization method, a modified basic method, a CMOD direct method with use of incremental equations, relationships of plastic geometry factors, constraint-dependent J-R curve testing and correction approaches. An overview of the present fracture toughness test standard ASTM E1820-08a is then presented. The review shows that after more than 40 years of investigation and development, the J-integral resistance curve test methods in ASTM E1820 have become simpler, more cost-effective and more accurate.展开更多
A class of problems concerning subinterface cracks interacting with the interface in metal/piezoelectric ceramic bimaterials are studied. The interaction problem is reduced to a system of integral equations with the a...A class of problems concerning subinterface cracks interacting with the interface in metal/piezoelectric ceramic bimaterials are studied. The interaction problem is reduced to a system of integral equations with the aid of the pseudo-traction-electric-displacement method. The equations are solved numerically, and the stress, intensity factor, the electric displacement intensity factor and the mechanical strain energy release rate are evaluated. Numerical results of a Cu/PZT-4 bimaterial are given and shown in figures, in which three kinds of remote loading conditions are considered to make comparisions. It is found that the electric loading at infinity plays a quite important role in the present interaction problem. In addition, a conservation law of the first component of the J k-integral, vector is found; which does lead to a consistency check to confirm the effectiveness of the PTEDM as well as the numerical results derived in this paper.展开更多
基金Specialized Research Fund for the Doctoral Program ofHigher Education(No20070286009)the Preresearch Project of the National Natural Science Foundation of Southeast University ( NoKJ2009388)
文摘The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with three groups of notch depths are tested at the temperature of - 10 and 20 ℃. The experimental results reveal good repeatability in EAM characterization. The tensile strength ratio of SCB to the indirect tensile test (IDT) is at a range of 1.4 to 1.7, and the ultimate strength of EAM is exponentially dependent on the notch depths. At the test temperatures, the critical J-integral value of EAM is much higher than that of hot mix asphalt( HMA) with thermoplastic asphalt binder. The response mode of EAM changes from ductile mode to brittle mode and the fracture energy increases 30% when temperature decreases from 20 to - 10℃, while its critical J-integral value decreases only 15%. It is concluded that EAM has better fracture resistance than thermo-plastic HMA; more fracture energy is needed to initiate cracks in EAM at low temperature, and the cracks propagate more rapidly than at room temperature.
基金Supported by Tianjin Natural Science Foundation (No.08JCYBJC09100)New Teacher Research Fund for the Doctoral Program of Higher Education of China (No.20070056096) and New Century Outstanding Talented Person Plan of China.
文摘The definition of J-integral of interfacial crack was introduced. The three-point bending tests were can'ied out to obtain the critical loading values when the interfacial crack initiation occurred between coatings and substrates. The finite element analysis (FEA) was adopted to analyze the stress distribution in the specimens and compute the J-integral of the interracial crack between LX88A coating and Chinese Q345 steel. The results showed that the average value of critical J-integral is 0.70 N/m, which can be taken as the fracture parameter to evaluate the interracial fracture behavior for the three-point bending specimens of LX88A coating/Q345 steel system.
文摘The blunting line equation is very important in J-integral testing because of its indispensability in the determination of valid data and JIC value. The blunting line equation in current standard has had a larger relative error in depiction of the crack blunting compared to the experimentally measured results. By analyzing the blunting process of the crack tip according to the D-B model, a new form of blunting line was obtained on the base of the path independence of J-integral, i.e., J=1.25(σs+Sf)/(1+n)·WSZ. Experimental results show that this equation is more precise to describe the crack blunting than those in current standards.
文摘A series of tests was performed with three-point single-edge-notched-bend (SENB) specimens in a condenser material (Titanium alloy). Results show that the J-integral values of welded joint and HAZ are obviously smaller than those of the base metal. It signifies that the welding process can result in a reduced toughness of Titanium alloy and the effect of crack orientation on toughness value is not negligible for engineering applications. Besides, the J-integral values of L-T direction specimens are much higher than those of L-S ones. The J-integral values of rolled ring are:JC-R>JC-L>JL-R.
文摘In this paper a critical review is presented of the history and current state of the art of J-integral resistance curve testing and experimental evaluation methods in conjunction with a discussion of the development of the plane strain fracture toughness test standard ASTM E1820 developed by American Society for Testing and Materials (ASTM). Early research efforts on this topic are reviewed first. These include the J-integral concept, experimental estimates of the J-integral for stationary cracks, load line displacement (LLD) and crack mouth opening displacement (CMOD) based η factor equations, different formulations of J-integral incremental equations for growing cracks, crack growth corrected J-R curve determination, and experimental test methods. Recent developments in J-R curve testing and evaluation are then described, with emphasis on accurate J-integral incremental equations, a normalization method, a modified basic method, a CMOD direct method with use of incremental equations, relationships of plastic geometry factors, constraint-dependent J-R curve testing and correction approaches. An overview of the present fracture toughness test standard ASTM E1820-08a is then presented. The review shows that after more than 40 years of investigation and development, the J-integral resistance curve test methods in ASTM E1820 have become simpler, more cost-effective and more accurate.
文摘A class of problems concerning subinterface cracks interacting with the interface in metal/piezoelectric ceramic bimaterials are studied. The interaction problem is reduced to a system of integral equations with the aid of the pseudo-traction-electric-displacement method. The equations are solved numerically, and the stress, intensity factor, the electric displacement intensity factor and the mechanical strain energy release rate are evaluated. Numerical results of a Cu/PZT-4 bimaterial are given and shown in figures, in which three kinds of remote loading conditions are considered to make comparisions. It is found that the electric loading at infinity plays a quite important role in the present interaction problem. In addition, a conservation law of the first component of the J k-integral, vector is found; which does lead to a consistency check to confirm the effectiveness of the PTEDM as well as the numerical results derived in this paper.