The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the tr...The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the treatment of ferromagnetic elements' loop. Thus the shapes of the primary hysteresis loop and each internal secondary hysteresis loop in the identical magnetism conducting are analyzed, and then it is proposed that there are some fractal characteristics in the relation between them. The fractal phenomenon of the ferromagnetic elements' hysteresis loop in the transformer's transient simulation is first brought forward, the mutuality between the ferromagnetic elements' primary hysteresis loop and its secondary hysteresis loops is revealed in mechanism by using the fractal theory. According to the iterated function system of fractal theory, the secondary hysteresis loops can be generated by the iterative calculation of the primary loop. The simulation results show the validity of this idea.展开更多
Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The e...Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.展开更多
准确、快速地计算磁性材料在非正弦激励下的损耗是变压器、电机等电力设备优化设计的关键环节,特别是当其包含偏置小磁滞回环的情况。然而,在现有的文献中还没有高效系统地考虑偏置小磁滞回环的非正弦激励下磁性材料损耗的算法。从主磁...准确、快速地计算磁性材料在非正弦激励下的损耗是变压器、电机等电力设备优化设计的关键环节,特别是当其包含偏置小磁滞回环的情况。然而,在现有的文献中还没有高效系统地考虑偏置小磁滞回环的非正弦激励下磁性材料损耗的算法。从主磁滞回环与其内部偏置小磁滞回环相互独立的角度出发,分别计算这两种环对应的磁滞损耗与剩余损耗分量,并基于简化静态Preisach模型推导磁滞损耗的通用算式;针对损耗统计理论(statistical theory of losses,STL)剩余损耗统计参数提取较为繁琐的问题,利用简化动态Preisach模型与STL剩余损耗算式之间的函数关系,推导剩余损耗统计参数的通用辨识公式,继而提出一种考虑偏置小磁滞回环的磁性材料非正弦激励损耗算法。利用所提算法,仅需少量传统正弦激励下的数据即可辨识模型所有参数。最后,通过实验及仿真验证所提算法的准确性与实用性。展开更多
文摘The simulation of the transformer transient is one of the indispensable qualifications for improving the performance of transformer protection, the key technique of the transformer's transient simulation is the treatment of ferromagnetic elements' loop. Thus the shapes of the primary hysteresis loop and each internal secondary hysteresis loop in the identical magnetism conducting are analyzed, and then it is proposed that there are some fractal characteristics in the relation between them. The fractal phenomenon of the ferromagnetic elements' hysteresis loop in the transformer's transient simulation is first brought forward, the mutuality between the ferromagnetic elements' primary hysteresis loop and its secondary hysteresis loops is revealed in mechanism by using the fractal theory. According to the iterated function system of fractal theory, the secondary hysteresis loops can be generated by the iterative calculation of the primary loop. The simulation results show the validity of this idea.
文摘Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
文摘准确、快速地计算磁性材料在非正弦激励下的损耗是变压器、电机等电力设备优化设计的关键环节,特别是当其包含偏置小磁滞回环的情况。然而,在现有的文献中还没有高效系统地考虑偏置小磁滞回环的非正弦激励下磁性材料损耗的算法。从主磁滞回环与其内部偏置小磁滞回环相互独立的角度出发,分别计算这两种环对应的磁滞损耗与剩余损耗分量,并基于简化静态Preisach模型推导磁滞损耗的通用算式;针对损耗统计理论(statistical theory of losses,STL)剩余损耗统计参数提取较为繁琐的问题,利用简化动态Preisach模型与STL剩余损耗算式之间的函数关系,推导剩余损耗统计参数的通用辨识公式,继而提出一种考虑偏置小磁滞回环的磁性材料非正弦激励损耗算法。利用所提算法,仅需少量传统正弦激励下的数据即可辨识模型所有参数。最后,通过实验及仿真验证所提算法的准确性与实用性。