The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double...The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double pulsar system. Accepting the spin-down age as a rough estimate(or often an upper limit) of the true age of the neutron star, we also impose the restrictions on the radius of this system. We calculate the radius of the recycled pulsar PSR J0737-3039 A ranges approximately from 8.14 to 25.74 km, and the composition of its neutron star nuclear matters is discussed in the mass-radius diagram.展开更多
The complete orbital and spin period evolutions of the double neutron star(NS)system PSR J0737-3039 are simulated from birth to coalescence,which include the two observed radio pulsars classified as primary NS PSR J07...The complete orbital and spin period evolutions of the double neutron star(NS)system PSR J0737-3039 are simulated from birth to coalescence,which include the two observed radio pulsars classified as primary NS PSR J0737-3039 A and companion NS PSR J0737-3039 B.By employing the characteristic age of PSR J0737-3039 B to constrain the true age of the double pulsar system,the initial orbital period and initial binary separation are obtained as 2.89 h and 1.44 x 106 km,respectively,and the coalescence age or the lifetime from the birth to merger of PSR J0737-3039 is obtained to be 1.38×10^(8)yr.At the last minute of coalescence,corresponding to the gravitational wave frequency changing from 20 Hz to1180 Hz,we present the binary separation of PSR J0737-3039 to be from 442 km to 30 km,while the spin periods of PSR J0737-3039 A and PSR J0737-3039 B are 27.10 ms and 4.63 s,respectively.From the standard radio pulsar emission model,before the system merged,the primary NS could still be observed by a radio telescope,but the companion NS had crossed the death line in the pulsar magnetic-field versus period(B-P)diagram at which point it is usually considered to cease life as a pulsar.This is the first time that the whole life evolutionary simulation of the orbit and spin periods for a double NS system is presented,which provides useful information for observing a primary NS at the coalescence stage.展开更多
There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come fr...There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schaefer and Wex Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schaefer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i=87.7-29^+17 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex &= Kopeikin's is supported.展开更多
Under the standard model extension (SME) framework, Lorentz invariance is tested in five binary pulsars: PSR J0737-3039, PSR B 1534+12, PSR J1756-2251, PSR B1913+16 and PSR B2127+11C. By analyzing the advance of...Under the standard model extension (SME) framework, Lorentz invariance is tested in five binary pulsars: PSR J0737-3039, PSR B 1534+12, PSR J1756-2251, PSR B1913+16 and PSR B2127+11C. By analyzing the advance of periastron, we obtain the constraints on a dimensionless combination of SME parameters that is sen- sitive to timing observations. The results imply no evidence for the break of Lorentz invariance at the 10-l level, one order of magnitude larger than the previous estima- tion.展开更多
We obtain preliminary limits on a logarithmic correction to the Newtonian gravitational potential by using five binary pulsars: PSR J0737-3039, PSR B 1534+12, PSR J 1756-2251, PSR B 1913+ 16 and PSR B2127+ 11C. Th...We obtain preliminary limits on a logarithmic correction to the Newtonian gravitational potential by using five binary pulsars: PSR J0737-3039, PSR B 1534+12, PSR J 1756-2251, PSR B 1913+ 16 and PSR B2127+ 11C. This kind of correction may originate from fundamental frameworks, like string theories, effective models of grav- ity due to quantum effects and the non-local gravity scheme. We estimate the upper limit of the Tohline-Kuhn-Kruglyak parameter A and the lower limit of the Fabris- Campos parameter α, which parameterize the correction and are connected to each other by αλ = -1. By analyzing the advances of periastron of these binary pulsars, we find that the preliminary upper limit of a is 0.19 ± 0.14 kpc^-1 and the prelimi- nary lower limit of ), is -5.2 4± 3.8 kpc. They are compatible with the bounds based on dynamics of spiral galaxies but quite different from those given by solar system dynamics. These results indicate that this logarithmic correction might be more ob- servable in current timings of binary pulsars than in motions of the solar system.展开更多
基金Supported by the National Program on Key Research and Development Project under Grant No 2016YFA0400801the National Natural Science Foundation of China under Grant Nos 11173034,11673023 and 11364007+2 种基金the Fundamental Research Funds for the Central Universitythe Key Support Disciplines of Theoretical Physics of Guizhou Province Education Bureau under Grant No ZDXK[2015]38the Youth Talents Project of Science and Technology in Education Bureau of Guizhou Province under Grant No KY[2017]204
文摘The aspect of formation and evolution of the recycled pulsar(PSR J0737-3039 A/B) is investigated, taking into account the contributions of accretion rate, radius and spin-evolution diagram(- diagram) in the double pulsar system. Accepting the spin-down age as a rough estimate(or often an upper limit) of the true age of the neutron star, we also impose the restrictions on the radius of this system. We calculate the radius of the recycled pulsar PSR J0737-3039 A ranges approximately from 8.14 to 25.74 km, and the composition of its neutron star nuclear matters is discussed in the mass-radius diagram.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11988101,11773005,U1631236,11703001,U1731238,U1938117,11725313,11721303)the International Partnership Program of Chinese Academy of Sciences(Grant No.114A11KYSB20160008)+3 种基金the National Key R&D Program of China(No.2016YFA0400702)supported by the National Basic Research Program(973 Program)(No.2015CB857100)National Key R&D Program of China(No.2017YFA0402600)the Guizhou Provincial Science and Technology Foundation(Grant No.[2020]1Y019)。
文摘The complete orbital and spin period evolutions of the double neutron star(NS)system PSR J0737-3039 are simulated from birth to coalescence,which include the two observed radio pulsars classified as primary NS PSR J0737-3039 A and companion NS PSR J0737-3039 B.By employing the characteristic age of PSR J0737-3039 B to constrain the true age of the double pulsar system,the initial orbital period and initial binary separation are obtained as 2.89 h and 1.44 x 106 km,respectively,and the coalescence age or the lifetime from the birth to merger of PSR J0737-3039 is obtained to be 1.38×10^(8)yr.At the last minute of coalescence,corresponding to the gravitational wave frequency changing from 20 Hz to1180 Hz,we present the binary separation of PSR J0737-3039 to be from 442 km to 30 km,while the spin periods of PSR J0737-3039 A and PSR J0737-3039 B are 27.10 ms and 4.63 s,respectively.From the standard radio pulsar emission model,before the system merged,the primary NS could still be observed by a radio telescope,but the companion NS had crossed the death line in the pulsar magnetic-field versus period(B-P)diagram at which point it is usually considered to cease life as a pulsar.This is the first time that the whole life evolutionary simulation of the orbit and spin periods for a double NS system is presented,which provides useful information for observing a primary NS at the coalescence stage.
文摘There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schaefer and Wex Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schaefer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i=87.7-29^+17 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex &= Kopeikin's is supported.
基金Supported by the National Natural Science Foundation of China,funded by the National Natural Science Foundation of China(Grant Nos. 10973009 and 11103010)the Fundamental Research Program of Jiangsu Province of China under No. BK2011553+1 种基金the Research Fund for the Doctoral Program of Higher Education of China under No. 20110091120003the Fundamental Research Funds for the Central Universitiesunder No. 1107020116
文摘Under the standard model extension (SME) framework, Lorentz invariance is tested in five binary pulsars: PSR J0737-3039, PSR B 1534+12, PSR J1756-2251, PSR B1913+16 and PSR B2127+11C. By analyzing the advance of periastron, we obtain the constraints on a dimensionless combination of SME parameters that is sen- sitive to timing observations. The results imply no evidence for the break of Lorentz invariance at the 10-l level, one order of magnitude larger than the previous estima- tion.
基金Supported by the National Natural Science Foundation of China
文摘We obtain preliminary limits on a logarithmic correction to the Newtonian gravitational potential by using five binary pulsars: PSR J0737-3039, PSR B 1534+12, PSR J 1756-2251, PSR B 1913+ 16 and PSR B2127+ 11C. This kind of correction may originate from fundamental frameworks, like string theories, effective models of grav- ity due to quantum effects and the non-local gravity scheme. We estimate the upper limit of the Tohline-Kuhn-Kruglyak parameter A and the lower limit of the Fabris- Campos parameter α, which parameterize the correction and are connected to each other by αλ = -1. By analyzing the advances of periastron of these binary pulsars, we find that the preliminary upper limit of a is 0.19 ± 0.14 kpc^-1 and the prelimi- nary lower limit of ), is -5.2 4± 3.8 kpc. They are compatible with the bounds based on dynamics of spiral galaxies but quite different from those given by solar system dynamics. These results indicate that this logarithmic correction might be more ob- servable in current timings of binary pulsars than in motions of the solar system.