期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
J70型增压器涡轮性能试验及其分析 被引量:1
1
作者 敬志良 《柴油机》 北大核心 1989年第2期9-12,8,共5页
本文用新近研制的一种高速小型径流涡轮测功装置,测取了J70型增压器涡轮的级性能。简述了该测功装置的特点及试验方法。给出了试验结果并就此作了分析。此种性能试验及其分析为其设计计算和增压配机提供了实际依据。
关键词 j70 涡轮 增压器 试验 性能
下载PDF
索尼J70c
2
《电子科技》 2002年第11期10-10,共1页
作为索尼(SONY)在中国推出的第一款内置天线手机,它的整机线条流畅简约,配合极具金属质感的哑光银白色面板,突现出强烈的时尚感。
关键词 索尼 j70c 手机 内置天线
下载PDF
索尼J70电话本出错解决方案
3
作者 Rickie 《移动信息》 2003年第3期57-57,共1页
关键词 索尼公司 j70 手机 电话本 SIM卡内存
下载PDF
索尼内置天线手机J70上市
4
作者 上官远方 《电脑与电信》 2002年第6期34-34,共1页
索尼的几款手机比如J16/J26等,功能都相当强大。尤其是Jog-Dial转点通控制,全图形化界面,6行文本屏幕以及和弦铃声,自录铃声等等功能,在千元价位的手机产品中是极其少见的,美中不足的是这两款手机都是采用外置天线,对于某些用户而言可... 索尼的几款手机比如J16/J26等,功能都相当强大。尤其是Jog-Dial转点通控制,全图形化界面,6行文本屏幕以及和弦铃声,自录铃声等等功能,在千元价位的手机产品中是极其少见的,美中不足的是这两款手机都是采用外置天线,对于某些用户而言可能嫌不太方便,现在索尼的新款J70也上市了,内置天线的设计会不会吸引到您呢? 展开更多
关键词 j70 图形化界面 多媒体短信 转点 POP
下载PDF
简约之美:索尼J70c手机
5
《新潮电子》 2002年第6期49-49,共1页
关键词 索尼 j70c 手机
下载PDF
区域文化软实力视域下的艺术创作——以门文元舞剧《阿炳》《西施》与《金陵十三钗》为切入点 被引量:3
6
作者 叶笛 《艺术百家》 CSSCI 北大核心 2016年第5期202-205,共4页
门文元舞剧《阿炳》《西施》与《金陵十三钗》的创作,通过对区域传统文化的萃取提升江苏文化凝聚力,通过对时代精神的诉诸提升江苏文化引领力,通过跨区域巡演提升江苏文化传播力,是艺术创作实现区域文化软实力提升的典范。在"十三... 门文元舞剧《阿炳》《西施》与《金陵十三钗》的创作,通过对区域传统文化的萃取提升江苏文化凝聚力,通过对时代精神的诉诸提升江苏文化引领力,通过跨区域巡演提升江苏文化传播力,是艺术创作实现区域文化软实力提升的典范。在"十三五规划"中,艺术创作需紧跟时代步伐,充分把握转型契机,实现文化软实力的更大突破。 展开更多
关键词 区域文化软实力 舞蹈艺术 艺术创作 门文元舞剧 凝聚力 引领力 传播力中图.4-)-类号 j70
下载PDF
The method of p-harmonic approximation and optimal interior partial regularity for energy minimizing p-harmonic maps under the controllable growth condition 被引量:2
7
作者 Shu-hong CHEN Zhong TAN 《Science China Mathematics》 SCIE 2007年第1期105-115,共11页
In this paper, we are concerned with the partial regularity for the weak solutions of energy minimizing p-harmonic maps under the controllable growth condition. We get the interior partial regularity by the p-harmonic... In this paper, we are concerned with the partial regularity for the weak solutions of energy minimizing p-harmonic maps under the controllable growth condition. We get the interior partial regularity by the p-harmonic approximation method together with the technique used to get the decay estimation on some Degenerate elliptic equations and the obstacle problem by Tan and Yan. In particular, we directly get the optimal regularity. 展开更多
关键词 p-harmonic approximation controllable growth condition REGULARITY 35j70 35J60 35D10 35B65
原文传递
Oblique derivative problem for general Chaplygin-Rassias equations 被引量:2
8
作者 WEN GuoChun LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China 《Science China Mathematics》 SCIE 2008年第1期5-36,共32页
The present paper deals with the oblique derivative problem for general second order equations of mixed (elliptic-hyperbolic) type with the nonsmooth parabolic degenerate line $$K_1 (y)u_{xx} + \left| {K_2 (x)} \right... The present paper deals with the oblique derivative problem for general second order equations of mixed (elliptic-hyperbolic) type with the nonsmooth parabolic degenerate line $$K_1 (y)u_{xx} + \left| {K_2 (x)} \right|u_{yy} + a(x,y)u_x + b(x,y)u_y + c(x,y)u = - d(x,y)$$ in any plane domain D with the boundary ?D=Γ ∪ L 1 ∪ L 2 ∪ L 3 ∪ L 4, where Γ(? {y > 0}) ∈ C μ 2 (0 < μ < 1) is a curve with the end points z = ?1, 1. L 1, L 2, L 3, L 4 are four characteristics with the slopes ?H 2(x)/H 1(y), H 2(x)/H 1(y),?H 2(x)/H 1(y),H 2(x)/H 1(y) (H 1(y) = √|K 1(y)|, H 2(x) = √|K 2(x)| in {y < 0}) passing through the points z = x + iy = ?1, 0, 0, 1 respectively. And the boundary condition possesses the form $$\frac{1}{2}\frac{{\partial u}}{{\partial \nu }} = \frac{1}{{H(x,y)}}\operatorname{Re} \left[ {\overline {\lambda (z)} u_{\tilde z} } \right] = r(z), z \in \Gamma \cup L_1 \cup L_4 , \operatorname{Im} \left[ {\overline {\lambda (z)} u_{\tilde z} } \right]\left| {_{z = z_l } } \right. = b_l ,l = 1,2, u( - 1) = b_0 ,u(1) = b_3 ,$$ in which z 1, z 2 are the intersection points of L 1, L 2, L 3, L 4 respectively. The above equations can be called the general Chaplygin-Rassias equations, which include the Chaplygin-Rassias equations $$K_1 (y)(M_2 (x)u_x )_x + M_1 (x)(K_2 (y)u_y )_y + r(x,y)u = f(x,y), in D$$ as their special case. The above boundary value problem includes the Tricomi problem of the Chaplygin equation: K(y)u xx+u yy = 0 with the boundary condition u(z) = ?(z) on Γ ∪ L 1 ∪ L 4 as a special case. Firstly some estimates and the existence of solutions of the corresponding boundary value problems for the degenerate elliptic and hyperbolic equations of second order are discussed. Secondly, the solvability of the Tricomi problem, the oblique derivative problem and Frankl problem for the general Chaplygin-Rassias equations are proved. The used method in this paper is different from those in other papers, because the new notations W(z) = W(x + iy) = $u_{\tilde z} $ = [H 1(y)u x ? iH 2(x)u y]/2 in the elliptic domain and W(z) = W(x+jy) = $u_{\tilde z} $ =[H 1(y)u x ? jH 2(x)u y]/2 in the hyperbolic domain are introduced for the first time, such that the second order equations of mixed type can be reduced to the mixed complex equations of first order with singular coefficients. And thirdly, the advantage of complex analytic method is used, otherwise the complex analytic method cannot be applied. 展开更多
关键词 oblique derivative problem equations of mixed type nonsmooth degenerate line 35j70 35L80 35N99
原文传递
The prescribed p-mean curvature equation of low regularity in the Heisenberg group
9
作者 CHENG Jih-Hsin 《Science China Mathematics》 SCIE 2009年第12期2604-2609,共6页
This work reports on the author's recent study about regularity and the singular set of a C 1 smooth surface with prescribed p (or H)-mean curvature in the 3-dimensional Heisenberg group.As a differential equation... This work reports on the author's recent study about regularity and the singular set of a C 1 smooth surface with prescribed p (or H)-mean curvature in the 3-dimensional Heisenberg group.As a differential equation,this is a degenerate hyperbolic and elliptic PDE of second order,arising from the study of CR geometry.Assuming only the p-mean curvature H ∈ C 0,it is shown that any characteristic curve is C 2 smooth and its (line) curvature equals-H.By introducing special coordinates and invoking the jump formulas along characteristic curves,it is proved that the Legendrian (horizontal) normal gains one more derivative.Therefore the seed curves are C 2 smooth.This work also obtains the uniqueness of characteristic and seed curves passing through a common point under some mild conditions,respectively.In an on-going project,it is shown that the p-area element is in fact C 2 smooth along any characteristic curve and satisfies a certain ordinary differential equation of second order.Moreover,this ODE is analyzed to study the singular set. 展开更多
关键词 Heisenberg group p-minimal surface Bernstein-type theorem 35L80 35j70 32V20 53A10 49Q10
原文传递
Carleman estimates and unique continuation property for the anisotropic differential-operator equations
10
作者 Veli B SHAKHMUROV 《Science China Mathematics》 SCIE 2008年第7期1215-1231,共17页
The unique continuation theorems for the anisotropic partial differential-operator equations with variable coefficients in Banach-valued L p -spaces are studied. To obtain the uniform maximal regularity and the Carlem... The unique continuation theorems for the anisotropic partial differential-operator equations with variable coefficients in Banach-valued L p -spaces are studied. To obtain the uniform maximal regularity and the Carleman type estimates for parameter depended differential-operator equations, the sufficient conditions are founded. By using these facts, the unique continuation properties are established. In the application part, the unique continuation properties and Carleman estimates for finite or infinite systems of quasielliptic partial differential equations are studied. 展开更多
关键词 Carleman estimates unique continuation embedding theorems Banach-valued function spaces differential operator equations maximal L p -regularity operator-valued Fourier multipliers interpolation of Banach spaces 34G10 35J25 35j70
原文传递
70BF3-3J型步进电动机故障分析及修复
11
作者 朱矾 《内燃机车》 1996年第7期40-42,共3页
对装配于东风4型机车上的70BF3—3J型步进电动机的主要故障原因作了具体分析,并提出了修复的具体方法和步骤。
关键词 步进电动机 故障分析 70BF3-3J型 内燃机车
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部