期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
ZNF554 Inhibits Endometrial Cancer Progression via Regulating RBM5 and Inactivating WNT/β-Catenin Signaling Pathway
1
作者 Cheng-cheng ZHU Heng-liang SUN +3 位作者 Teng-fei LONG Yuan-yuan LYU Jiang-li LIU Guan-tai NI 《Current Medical Science》 SCIE CAS 2024年第2期406-418,共13页
Objective:Uterine corpus endometrial carcinoma(UCEC),a kind of gynecologic malignancy,poses a significant risk to women’s health.The precise mechanism underlying the development of UCEC remains elusive.Zinc finger pr... Objective:Uterine corpus endometrial carcinoma(UCEC),a kind of gynecologic malignancy,poses a significant risk to women’s health.The precise mechanism underlying the development of UCEC remains elusive.Zinc finger protein 554(ZNF554),a member of the Krüppel-associated box domain zinc finger protein superfamily,was reported to be dysregulated in various illnesses,including malignant tumors.This study aimed to examine the involvement of ZNF554 in the development of UCEC.Methods:The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay.Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection.CCK-8,wound healing,and Transwell invasion assays were employed to assess cell proliferation,migration,and invasion.Propidium iodide(PI)staining combined with fluorescence-activated cell sorting(FACS)flow cytometer was utilized to detect cell cycle distribution.qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels.Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5(RBM5).Results:The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines.Decreased expression of ZNF554 was associated with higher tumor stage,decreased overall survival,and reduced disease-free survival in UCEC.ZNF554 overexpression suppressed cell proliferation,migration,and invasion,while also inducing cell cycle arrest.In contrast,a decrease in ZNF554 expression resulted in the opposite effect.Mechanistically,ZNF554 transcriptionally regulated RBM5,leading to the deactivation of the Wingless(WNT)/β-catenin signaling pathway.Moreover,the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression onβ-catenin and p-glycogen synthase kinase-3β(p-GSK-3β).Similarly,the deliberate activation of RBM5 reduced the increase inβ-catenin and p-GSK-3βcaused by the suppression of ZNF554.In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown.Additionally,when RBM5 was overexpressed,it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels.Conclusion:ZNF554 functions as a tumor suppressor in UCEC.Furthermore,ZNF554 regulates UCEC progression through the RBM5/WNT/β-catenin signaling pathway.ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC. 展开更多
关键词 zinc finger protein 554 endometrial carcinoma RNA binding motif 5 Wingless/β-catenin signaling pathway
下载PDF
Mechanism of action of cordycepin in the treatment of hepatocellular carcinoma via regulation of the Hippo signaling pathway
2
作者 Xiaomin Li Qing Liu +2 位作者 Songyu Xie Xiaoping Wu Junsheng Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1040-1054,共15页
Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in ... Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma. 展开更多
关键词 CORDYCEPIN Hepatocellular carcinoma Hippo signaling pathway GBP3 ETV5
下载PDF
Netrin-1 signaling pathway mechanisms in neurodegenerative diseases
3
作者 Kedong Zhu Hualong Wang +2 位作者 Keqiang Ye Guiqin Chen Zhaohui Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期960-972,共13页
Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal sur... Netrin-1 and its receptors play crucial roles in inducing axonal growth and neuronal migration during neuronal development.Their profound impacts then extend into adulthood to encompass the maintenance of neuronal survival and synaptic function.Increasing amounts of evidence highlight several key points:(1)Diminished Netrin-1 levels exacerbate pathological progression in animal models of Alzheimer’s disease and Parkinson’s disease,and potentially,similar alterations occur in humans.(2)Genetic mutations of Netrin-1 receptors increase an individuals’susceptibility to neurodegenerative disorders.(3)Therapeutic approaches targeting Netrin-1 and its receptors offer the benefits of enhancing memory and motor function.(4)Netrin-1 and its receptors show genetic and epigenetic alterations in a variety of cancers.These findings provide compelling evidence that Netrin-1 and its receptors are crucial targets in neurodegenerative diseases.Through a comprehensive review of Netrin-1 signaling pathways,our objective is to uncover potential therapeutic avenues for neurodegenerative disorders. 展开更多
关键词 Alzheimer’s disease axon guidance colorectal cancer Netrin-1 receptors Netrin-1 signaling pathways NETRIN-1 neurodegenerative diseases neuron survival Parkinson’s disease UNC5C
下载PDF
Oleanolic acid inhibits colon cancer cell stemness and reverses chemoresistance by suppressing JAK2/STAT3 signaling pathway
4
作者 RUOYU CHEN YIMAN WU +3 位作者 FENG WANG JUNTAO ZHOU HUAZHANG ZHUANG WEI LI 《BIOCELL》 SCIE 2024年第7期1037-1046,共10页
Background:Oleanolic acid(OA),a pentacyclic triterpenoid exhibiting specific anti-cancer properties and highly effective antioxidant activity,was isolated from traditional Chinese medicinal herbs.Conversely,the OA that... Background:Oleanolic acid(OA),a pentacyclic triterpenoid exhibiting specific anti-cancer properties and highly effective antioxidant activity,was isolated from traditional Chinese medicinal herbs.Conversely,the OA that impacts colon cancer(CC)cells and its underlying mechanisms remain poorly understood.Methods:The cytotoxic effect of OA alone or OA-5-Fluorouracil(5-FU)combination on normal and CC cells was analyzed by methyl thiazolyl diphenyl-tetrazolium bromide(MTT).Then,the impact of OA on CC cell lines(LoVo and HT-29)proliferation and stemness were measured using colon formation and tumorsphere formation assays.Octamer-binding transcription factor 4(Oct4),Prominin-1(CD133),Nanog,and transcription factor SOX-2(SOX2)are cell stemness-related indicators whose expression was assessed usingfluorescence qPCR assay,Western blotting,and immunohistochemistry.The effect of OA on the proliferative potency of CC cells was evaluated using an in vivo model.Results:The stem-like characteristics and clone production of colon cancer cells were markedly reduced by OA alone or in combination with OA-5-FU.Moreover,OA increases the susceptibility of CC cells to 5-FU by blocking the cell stemness-related markers(CD133,Nanog,SOX2,and Oct4)expression levels both in vitro and in vivo,as well as by inactivating the activator of transcription 3(STAT3 signaling)and Janus kinase 2/signal transducer(JAK2).Conclusion:Thesefindings imply that oleanolic acid,both in vitro and in vivo,suppresses the JAK2/STAT3 pathway,which in turn reverses chemoresistance and decreases colon cancer cell stemness.Therefore,by reducing the recommended amount of 5-FU,this strategy may improve chemotherapeutic effectiveness and minimize undesired side effects. 展开更多
关键词 Colon cancer Oleanolic acid Stemness 5-FU JAK2/STAT3 signaling pathway
下载PDF
The Antidepressant Mechanism of JiaWeiWenDan Decoction Regulating p38MAPK-ERK5 Signal Transduction Pathway
5
作者 Yue Gao Qi Zhang +1 位作者 Li Wu Jianye Dai 《Journal of Biosciences and Medicines》 2023年第4期199-207,共9页
Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, ... Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling. 展开更多
关键词 JiaWeiWenDan Decoction DEPRESSION p38MAPK-ERK5 signal Transduction pathway
下载PDF
MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes 被引量:10
6
作者 Que Zhang Rui Cai +2 位作者 Guorong Tang Wanrong Zhang Weijun Pang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2021年第1期220-235,共16页
Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a nov... Background: Intramuscular fat(IMF) content is a vital parameter for assessing pork quality. Increasing evidence has shown that microRNAs(miRNAs) play an important role in regulating porcine IMF deposition. Here, a novel miRNA implicated in porcine IMF adipogenesis was found, and its effect and regulatory mechanism were further explored with respect to intramuscular preadipocyte proliferation and differentiation.Results: By porcine adipose tissue miRNA sequencing analysis, we found that miR-146a-5p is a potential regulator of porcine IMF adipogenesis. Further studies showed that miR-146a-5p mimics inhibited porcine intramuscular preadipocyte proliferation and differentiation, while the miR-146a-5p inhibitor promoted cell proliferation and adipogenic differentiation. Mechanistically, miR-146a-5p suppressed cell proliferation by directly targeting SMAD family member 4(SMAD4) to attenuate TGF-β signaling. Moreover, miR-146a-5p inhibited the differentiation of intramuscular preadipocytes by targeting TNF receptor-associated factor 6(TRAF6) to weaken the AKT/mTORC1 signaling downstream of the TRAF6 pathway.Conclusions: MiR-146a-5p targets SMAD4 and TRAF6 to inhibit porcine intramuscular adipogenesis by attenuating TGF-β and AKT/mTORC1 signaling, respectively. These findings provide a novel miRNA biomarker for regulating intramuscular adipogenesis to promote pork quality. 展开更多
关键词 Adipogenesis AKT/mTORC1 signal pathway MiR-146a-5p Porcine intramuscular fat SMAD4 TGF-βsignal pathway TRAF6
下载PDF
Role of JAK-STAT3 signaling pathway during neuronal differentiation of rat bone marrow mesenchymal stem cells 被引量:2
7
作者 Huaiyong Hao Yongguang Wang +4 位作者 Feng Cheng Baosheng Huang Heping Tian Xueliang Dai Lixin Li 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第5期337-341,共5页
Recent studies regarding neuronal differentiation of mesenchymal stem cells (MSCs) have primarily focused on induction methods and transplantation in vivo. However, knowledge about the intrinsic regulatory mechanism... Recent studies regarding neuronal differentiation of mesenchymal stem cells (MSCs) have primarily focused on induction methods and transplantation in vivo. However, knowledge about the intrinsic regulatory mechanisms underlying neuronal induction of MSCs remains limited and unclear. OBJECTIVE: To elucidate the role of JAK-STAT3 signaling pathway during neuronal differentiation of MSCs using a combination of the JAK-STAT3 signaling inhibitor AG490 and growth factors. DESIGN, TIME AND SETTING: Neural, molecular, biomedical, in vitro experiment was performed at the Laboratory of Pharmacology, School of Pharmacy, Nanjing Medical University between March and December 2008 MATERIALS: An inhibitor of the JAK-STAT3 signaling pathway was purchased from Calbiochem, USA. Antibody kit for total and phosphorylated STAT3 was purchased from Cell Signaling, USA. METHODS: MSCs from passage 3 were assigned to non-induced, growth factor, and AG490 groups. MAIN OUTCOME MEASURE: The number of cells expressing neuron-specific enolase, microtubule-associated protein, and glial fibrillary acidic protein were determined by immunocytochemistry. Total and phosphorylated (Tyr705) expression levels of STAT3 protein were measured by Western blot analysis. RESULTS: MSCs were transdifferentiated into neuronal- and astrocyte-like phenotypes through the induction of epidermal growth factor, basic fibroblast growth factor, and brain-derived neurotrophic factor. In addition, the JAK-STAT3 signaling pathway was significantly activated during neural differentiation. Expression of phosphorylated (Tyr705) STAT3 was inhibited with AG490 (5 pmol/L) prior to neural induction with epidermal growth factor, basic fibroblast growth factor, and brain-derived neurotrophic factor; proportion of astrocyte-like cells was significantly reduced (P 〈 0.01), and the proportion of neuronal-like phenotypes was significantly increased (P〈 0.01). CONCLUSION: JAK-STAT3 signaling pathway was shown to regulate neuronal induction of bone marrow MSCs. The proportion of MSC-induced neuronal-like cells was increased following treatment with the JAK-STAT3 signaling inhibitor AG490. 展开更多
关键词 jak-stat3 signaling pathway mesenchymal stem cells AG490 neuronal induction NEURONS ASTROCYTES stem cells neural regeneration
下载PDF
Hepatitis C virus core protein-induced miR-93-5p upregulation inhibits interferon signaling pathway by targeting IFNAR1 被引量:2
8
作者 Chang-Long He Ming Liu +5 位作者 Zhao-Xia Tan Ya-Jun Hu Qiao-Yue Zhang Xue-Mei Kuang Wei-Long Kong Qing Mao 《World Journal of Gastroenterology》 SCIE CAS 2018年第2期226-236,共11页
AIM To investigate the mechanism by which hepatitis C virus(HCV) core protein-induced mi R-93-5 p up-regulation regulates the interferon(IFN) signaling pathway.METHODS HCV-1 b core protein was exogenously expressed in... AIM To investigate the mechanism by which hepatitis C virus(HCV) core protein-induced mi R-93-5 p up-regulation regulates the interferon(IFN) signaling pathway.METHODS HCV-1 b core protein was exogenously expressed in Huh7 cells using pc DNA3.1(+) vector. The expression of mi R-93-5 p and interferon receptor 1(IFNAR1) was measured using quantitative reverse transcriptionpolymerase chain reaction and Western blot. The protein expression and phosphorylation level of STAT1 were evaluated by Western blot. The overexpression and silencing of mi R-93-5 p and IFNAR1 were performed using mi R-93-5 p agomir and antagomir, and pc DNA3.1-IFNAR1 and IFNAR1 si RNA, respectively. Luciferase assay was used to identify whether IFNAR1 is a target of mi R-93-5 p. Cellular experiments were also conducted.RESULTS Serum mi R-93-5 p level was increased in patients with HCV-1 b infection and decreased to normal level after HCV-1 b clearance, but persistently increased in those with pegylated interferon-α resistance, compared with healthy subjects. Serum mi R-93-5 p expression had an AUC value of 0.8359 in distinguishing patients with pegylated interferon-α resistance from those with pegylated interferon-α sensitivity. HCV-1 b core protein increased mi R-93-5 p expression and induced inactivation of the IFN signaling pathway in Huh7 cells. Furthermore, IFNAR1 was identified as a direct target of mi R-93-5 p, and IFNAR1 restore could rescue mi R-93-5 p-reduced STAT1 phosphorylation, suggesting that the mi R-93-5 p-IFNAR1 axis regulates the IFN signaling pathway.CONCLUSION HCV-1 b core protein-induced mi R-93-5 p up-regulation inhibits the IFN signaling pathway by directly targeting IFNAR1, and the mi R-93-5 p-IFNAR1 axis regulates STAT1 phosphorylation. This axis may be a potential therapeutic target for HCV-1 b infection. 展开更多
关键词 HEPATITIS C virus miR-93-5p INTERFERON receptor 1 IFN signaling pathway
下载PDF
Tomato SlPti5 plays a regulative role in the plant immune response against Botrytis cinerea through modulation of ROS system and hormone pathways 被引量:2
9
作者 TANG Qiong ZHENG Xiao-dong +1 位作者 GUO Jun YU Ting 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第3期697-709,共13页
While SlPti5 has been shown to play a crucial role in the regulation of antagonistic genes in Solanum lycopersicum and Arabidopsis against pathogen infection,there have been no comprehensive studies on the effects of ... While SlPti5 has been shown to play a crucial role in the regulation of antagonistic genes in Solanum lycopersicum and Arabidopsis against pathogen infection,there have been no comprehensive studies on the effects of SlPti5 on the regulatory response mechanism of reactive oxygen species(ROS) system and hormone pathways during growth and disease resistance of tomato plants.Here,we investigated the function of SlPti5 in the defense response of tomato against Botrytis cinerea utilizing a virus-induced gene silencing(VIGS)-based system.Expression profile analysis showed that SlPti5 was significantly induced upon B.cinerea infection,with high expression levels in the leaves and fruit of tomato.VIGS-based silencing of SlPti5 inhibited early vegetative growth,increased the plant’s susceptibility to infection,promoted the development of ROS,affected the expression of genes involved in the ROS scavenging system,and attenuated the expression of genes associated with pathogenesis and the ethylene/jasmonic acid signaling pathways.In sum,our data demonstrated that SlPti5 stimulates the immune response of tomato plant to Botrytis cinerea infection by involving the ethylene(ET)-and jasmonic acid(JA)-mediated pathways and modulating the expression of some key pathogenesis-related(PR) genes. 展开更多
关键词 tomato(Solanum lycopersicum) Botrytis cinerea Sl Pti5 immune response ET-and JA-mediated signaling pathways pathogenesis-related proteins
下载PDF
miR-146a-5p affects inflammation response of trophoblast by inhibiting TRAF6/NF-кB signaling pathway
10
作者 Fang-Rong Chen Dong-Cai Wu Xiao-Ju Chen 《Journal of Hainan Medical University》 2021年第6期10-14,共5页
Objective:To investigate the association of Micro-rna(miR)-146a-5p expression with preeclampsia,and further explore the potential mechanism involved.Methods:Compared with the blank control group,the expressions of miR... Objective:To investigate the association of Micro-rna(miR)-146a-5p expression with preeclampsia,and further explore the potential mechanism involved.Methods:Compared with the blank control group,the expressions of miR-146a-5p and TRAF6 were detected in lipopolysaccharide(LPS)-induced JEG-3 cells.Chorionic carcinoma cell JEG-3 in vitro culture are divided into control,miR-146a-5p mimic+lipopolysaccharide(lps),miR-146a-5p mimic and miR-146a-5p inhibitor groups.qRT-PCR analysis were used to detect the mRNA of miR-146a-5p,IL-1β,IL-6,IL-8 and TNF-α.Western blot assays were carried out to determine the protein expression of TRAF6/NF-кB pathway related proteins.Results:1.miR-146a expression in miR-146a mimic group were significantly higher than the other three groups(P<0.05).2.Compared with the control group,the expression level of miR-146a-5p in JEG-3 cells induced by LPS was significantly increased,and the expression level of TRAF6 was significantly reduced(P<0.05).3.Compared with the control group,the mRNA expression levels of IL-1β,IL-6,IL-8,and TNF-αdecreased significantly after using miR-146a mimic(P<0.05).After adding miR-146a inhibitor,the mRNA expression levels of IL-1β,IL-6,IL-8,and TNF-αwere significantly increased(P<0.05).However,compared with the mimic+LPS group,the difference was not statistically significant(all P>0.05).The results of Western Blot showed that the expression of TRAF6 and NF-κB protein in JEG-3 cells decreased significantly after adding miR-146a mimic and increased after adding miR-146a inhibitor.Conclusion:MiR-146-5p can affect the inflammation response of Maternal-fetal interface by inhibiting TRAF6/NF-кB signaling pathway in preeclampsia. 展开更多
关键词 miR-146-5p TRAF6/NF-кB signaling pathway TROPHOBLAST INFLAMMATION
下载PDF
5-methoxytryptophan induced apoptosis and PI3K/Akt/FoxO3a phosphorylation in colorectal cancer 被引量:1
11
作者 Tian-Lei Zhao Yue Qi +3 位作者 Yi-Fan Wang Yi Wang Hui Liang Ya-Bin Pu 《World Journal of Gastroenterology》 SCIE CAS 2023年第47期6148-6160,共13页
BACKGROUND Colorectal cancer(CRC)is a highly prevalent malignancy worldwide,and new therapeutic targets urgently need to be found to prolong patient survival.5-methoxytryptophan(5-MTP)is a tryptophan metabolite found ... BACKGROUND Colorectal cancer(CRC)is a highly prevalent malignancy worldwide,and new therapeutic targets urgently need to be found to prolong patient survival.5-methoxytryptophan(5-MTP)is a tryptophan metabolite found in animals and humans.However,the effects of 5-MTP on proliferation and apoptosis of CRC cells are currently unknown.AIM To investigate the effects of 5-MTP on the proliferation,migration,invasion,and apoptosis abilities of CRC cells.Additionally,we seek to explore whether 5-MTP has the potential to be utilized as a drug for the treatment of CRC.METHODS In order to evaluate the effect of 5-MTP on CRC cells,a series of experiments were conducted for evaluation.Colony formation assay and Cell Counting Kit 8 assays were used to investigate the impact of 5-MTP on the proliferation of CRC cell lines.Cell cycle assays were employed to examine the effect of 5-MTP on cellular growth.In addition,we investigated the effects of 5-MTP on apoptosis and reactive oxygen species in HCT-116 cells.To obtain a deeper understanding of how 5-MTP affects CRC,we conducted a study to examine its influence on the PI3K/Akt signaling pathway in CRC cells.RESULTS This article showed that 5-MTP promoted apoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells.In many articles,it has been reported that PI3K/Akt/FoxO3a signaling pathway is one of the most important signaling pathways involved in internal regulating cell proliferation and differentiation. Nevertheless, 5-MTP combined with PI3K/Akt/FoxO3a signaling pathway inhibitors significantly promotedapoptosis and cell cycle arrest and inhibited cell proliferation in CRC cells compared with 5-MTP alone in ourstudy.CONCLUSIONTherefore, there is strong evidence that 5-MTP can be used as an effective medicine for CRC treatment. 展开更多
关键词 Colorectal cancer 5-methoxytryptophan Apoptosis Cell cycle arrest PI3K/Akt signaling pathway
下载PDF
Angelica sinensis polysaccharides ameliorate 5-flourouracil-induced bone marrow stromal cell proliferation inhibition via regulating Wnt/β-catenin signaling
12
作者 HANXIANZHI XIAO RONGJIA QI +4 位作者 ZILING WANG MINGHE XIAO YUE XIANG YAPING WANG LU WANG 《BIOCELL》 SCIE 2021年第4期1045-1058,共14页
Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica s... Chemotherapy may cause cellular oxidative stress to bone marrow.Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment.Angelica sinensis polysaccharides(ASP)are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features.In the current study,we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell(BMSC)damage.The human bone marrow stromal cell line HS-5 cells were divided into control group,5-FU group,5-FU+ASP group,and 5-FU+LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation inhibition.The results showed that 5-FU inhibits the growth of HS-5 cells in a time and dose-dependent manner;however,ASP partially counteracted the 5-FU-induced decrease in cell viability,whereas Wnt signaling inhibitor Dkk1 antagonized the effect of ASP on HS-5 cells.ASP reversed the decrease in total cytoplasmicβ-catenin,p-GSK-3β,and CyclinD1 following 5-FU treatment and modulated nuclear expression ofβ-catenin,Lef-1,and C-myc proteins.Furthermore,ASP also enhanced the antioxidant capacity of cells and reduced 5-FU-induced oxidative stress,attenuated FoxO1 expression,thus weakened its downstream apoptosis-related proteins and G0/G1 checkpoint-associated p27^(Kip1) expression to alleviate 5-FU-induced apoptosis and to promote cell cycle progression.All the results above suggest that the protective role of ASP in 5-FU-treated BMSCs proliferation for the chemotherapy may be related to its activating Wnt/β-catenin signaling and keeping homeostasis betweenβ-catenin and FoxO1 under oxidative stress.The study provides a potential therapeutic strategy for alleviating chemotherapeutic damage on BMSCs. 展开更多
关键词 Angelica sinensis polysaccharides 5-FLUOROURACIL Wnt/β-catenin signaling pathway Oxidative stress Cell proliferation FOXO1
下载PDF
Efficacy of Yisui granule(益髓颗粒)on myelodysplastic syndromes in SKM-1 mouse xenograft model through suppressing Wnt/β-catenin signaling pathway
13
作者 WU Jieya HOU Li +3 位作者 ZHANG Xiaoyuan Elizabeth Gullen GAO Chong WANG Jing 《Journal of Traditional Chinese Medicine》 SCIE CSCD 2024年第1期78-87,共10页
OBJECTIVE:To unmask the underlying mechanisms of Yisui granule(益髓颗粒,YSG)for the treatment of Myelodysplastic syndromes(MDS).METHODS:Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor po... OBJECTIVE:To unmask the underlying mechanisms of Yisui granule(益髓颗粒,YSG)for the treatment of Myelodysplastic syndromes(MDS).METHODS:Our study used an SKM-1 mouse xenograft model of MDS to explore the anti-tumor potential of YSG and its safety,assess its effect on overall survival(OS),and evaluate whether its mechanism is associated with the demethylation of the secreted frizzled related protein 5(s FRP5)gene and suppressing Wnt/β-catenin pathway.Bisulfite amplicon sequencing was applied to detect the level of methylation of the s FRP5 gene;western blotting,immunofluorescence staining,and real-time Polymerase Chain Reaction were performed to detect DNA methyltransferase 1(DNMT1),s FRP5,and other Wnt/β-catenin pathway-related m RNA and protein expression.RESULTS:The results showed that high-dosage YSG exerted an anti-tumor effect similar to that of decitabine,improved OS,and reduced long-term adverse effects in the long term.Mechanically,YSG reduced the expression of DNMT1 methyltransferase,decreased the methylation,and increased the expression of the Wnt/β-catenin pathway antagonist-s FRP5.Furthermore,components of the Wnt/β-catenin pathway,including Wnt3a,β-catenin,c-Myc,and cyclin D1,were down-regulated in response to YSG,suggesting that YSG could treat MDS by demethylating the s FRP5 gene and suppressing the Wnt/β-catenin pathway.CONCLUSIONS:Our findings demonstrated that YSG could be used alone or in combination with decitabine to improve outcomes in the MDS animal model,providing an alternative solution for treating MDS. 展开更多
关键词 myelodysplastic syndromes Wnt signaling pathway beta catenin DECITABINE SURVIVAL adverse effects sFRP5 gene methylation Yisui granule
原文传递
Hypoglycemic effect and the mechanism of action of a polysaccharide from sweet corncob in a high-fat diet and streptozotocin-induced diabetic mice
14
作者 Xin Wang Weiye Xiu +3 位作者 Ye Han Zhili Wang Yu Luo Yongqiang Ma 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1543-1555,共13页
Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,a... Type 2 diabetes mellitus(T2DM)is a metabolic disease caused by a glycolipid metabolism disorder and isletβ-cell dysfunction.SCP-80-I is a biologically active water-soluble polysaccharide isolated from sweet corncob,an agricultural byproduct.The hypoglycemic effects of SCP-80-I on T2DM mice and its mechanisms were investigated in this study.SCP-80-I was found to significantly reduce blood glucose and lipid deposition levels in T2DM mice,as well as decrease serum leptin and increase adiponectin secretion.Interestingly,real time-polymerase chain reaction(RT-PCR)and Western blotting results revealed that SCP-80-I could regulate the expression of several glycolipid metabolisms and insulin secretion genes and proteins,including 5'-AMP-activated protein kinase(AMPK),carnitine palmitoyltransferase I(CPTI),and acetyl coenzyme A carboxylase(ACC)in the liver and AMPK,sirtuin1(Sirtl),peroxisome proliferator-activated receptorycoactivator-1(PGC-1α),and uncoupling protein 2(UCP2)in the pancreas.To have a hypoglycemic effect,SCP-80-1 regulated glycolipid metabolism and islet cell function in the liver by regulating the AMPK/AC C/CPT1 signaling pathway and the AMPK/Sirt1/PGC-1αand AMPK/Sirtl/UCP2 signaling pathways.These findings improve our understanding of polysaccharides derived from sweet corncob and the use of SCP-80-I in the production of hypoglycemic foods. 展开更多
关键词 Sweet corn cob polysaccharide Type 2 diabetes signal pathway 5’-AMP-activated protein kinase(AMPK)
下载PDF
3C^(pro)of FMDV inhibits type II interferon-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation
15
作者 Xiangju Wu Lei Chen +10 位作者 Chao Sui Yue Hu Dandan Jiang Fan Yang Laura C.Miller Juntong Li Xiaoyan Cong Nataliia Hrabchenko Changhee Lee Yijun Du Jing Qi 《Virologica Sinica》 SCIE CAS CSCD 2023年第3期387-397,共11页
Foot-and-mouth disease virus(FMDV)has developed various strategies to antagonize the host innate immunity.FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms.The structural protein VP3 of FMDV ... Foot-and-mouth disease virus(FMDV)has developed various strategies to antagonize the host innate immunity.FMDV Lpro and 3Cpro interfere with type I IFNs through different mechanisms.The structural protein VP3 of FMDV degrades Janus kinase 1 to suppress IFN-γsignaling transduction.Whether non-structural proteins of FMDV are involved in restraining type II IFN signaling pathways is unknown.In this study,it was shown that FMDV replication was resistant to IFN-γtreatment after the infection was established and FMDV inhibited type II IFN induced expression of IFN-γ-stimulated genes(ISGs).We also showed for the first time that FMDV non-structural protein 3C antagonized IFN-γ-stimulated JAK-STAT signaling pathway by blocking STAT1 nuclear translocation.3C^(pro)expression significantly reduced the ISGs transcript levels and palindromic gamma-activated sequences(GAS)promoter activity,without affecting the protein level,tyrosine phosphorylation,and homodimerization of STAT1.Finally,we provided evidence that 3C protease activity played an essential role in degrading KPNA1 and thus inhibited ISGs mRNA and GAS promoter activities.Our results reveal a novel mechanism by which an FMDV non-structural protein antagonizes host type II IFN signaling. 展开更多
关键词 Foot-and-mouth disease virus(FMDV) 3C IFN-γ jak-stat signaling pathway STAT1 KPNA1
原文传递
Taurolidine improved protection against highly pathogenetic avian influenza H5N1 virus lethal-infection in mouse model by regulating the NF-κB signaling pathway
16
作者 Chaoxiang Lv Yuanguo Li +15 位作者 Tiecheng Wang Qiqi Zhang Jing Qi Mingwei Sima Entao Li Tian Qin Zhuangzhuang Shi Fangxu Li Xuefeng Wang Weiyang Sun Na Feng Songtao Yang Xianzhu Xia Ningyi Jin Yifa Zhou Yuwei Gao 《Virologica Sinica》 SCIE CAS CSCD 2023年第1期119-127,共9页
Taurolidine(TRD),a derivative of taurine,has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls,endotoxins and exotoxins to inhibit the adhesion of microorganisms.However,its application in a... Taurolidine(TRD),a derivative of taurine,has anti-bacterial and anti-tumor effects by chemically reacting with cell-walls,endotoxins and exotoxins to inhibit the adhesion of microorganisms.However,its application in antiviral therapy is seldom reported.Here,we reported that TRD significantly inhibited the replication of influenza virus H5N1 in MDCK cells with the half-maximal inhibitory concentration(EC_(50))of 34.45μg/mL.Furthermore,the drug inhibited the amplification of the cytokine storm effect and improved the survival rate of mice lethal challenged with H5N1(protection rate was 86%).Moreover,TRD attenuated virus-induced lung damage and reduced virus titers in mice lungs.Administration of TRD reduced the number of neutrophils and increased the number of lymphocytes in the blood of H5N1 virus-infected mice.Importantly,the drug regulated the NF-κB signaling pathway by inhibiting the separation of NF-κB and IκBa,thereby reducing the expression of inflammatory factors.In conclusion,our findings suggested that TRD could act as a potential anti-influenza drug candidate in further clinical studies. 展开更多
关键词 Influenza viruses H5N1 Taurolidine(TRD) Cytokine storms Inflammatory response NF-κB signaling pathway
原文传递
Expression of hepatic Wnt5a and its clinicopathological features in patients with hepatocellular carcinoma 被引量:5
17
作者 Li Wang Min Yao +5 位作者 Miao Fang Wen-Jie Zheng Zhi-Zhen Dong Liu-Hong Pan Hai-Jian Zhang Deng-Fu Yao 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2018年第3期227-232,共6页
Backgroud: Wingless-type MMTV integration site family member 5a (Wnt5a) is involved in carcinogenesis.However, little data are available in Wnt5a signaling with hepatocellular carcinoma (HCC). In thepresent study... Backgroud: Wingless-type MMTV integration site family member 5a (Wnt5a) is involved in carcinogenesis.However, little data are available in Wnt5a signaling with hepatocellular carcinoma (HCC). In thepresent study, we investigated the expression of hepatic Wnt5a in HCC and the role of Wnt5a in HCCprogression and outcome. 展开更多
关键词 Wnt5a signaling Hepatocellular carcinoma Clinical staging Tissue microarray Wnt/β-catenin pathway Wnt3a signaling
下载PDF
Effects and Mechanism of Irbesartan on Tubulointerstitial fibrosis in 5/6 Nephrectomized Rats 被引量:4
18
作者 赵刚 赵洪 +5 位作者 凃玲 徐西振 郑常龙 姜美华 汪培华 汪道文 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2010年第1期48-54,共7页
Tubulointerstitial fibrosis(TIF)is a common pathological feature of end-stage kidney disease.Previous studies showed that upregulation of TGFβ1 notably contributed to the chronic renal injury and irbesartan halted th... Tubulointerstitial fibrosis(TIF)is a common pathological feature of end-stage kidney disease.Previous studies showed that upregulation of TGFβ1 notably contributed to the chronic renal injury and irbesartan halted the development of TIF in rats with 5/6 renal mass reduction.This study was to investigate the effects of irbesartan on chronic TIF and the mechanism involved TGFβ1 in the rodent model of chronic renal failure involving 5/6 nephrectomy.The results showed that irbesartan significantly attenuated th... 展开更多
关键词 chronic tubulointerstitial fibrosis IRBESARTAN 5/6 nephrectomy signaling pathway
下载PDF
Complement C3a signaling mediates production of angiogenic factors in mesenchymal stem cells
19
作者 Richard G. DiScipio Sophia K. Khaldoyanidi +1 位作者 Rosita Moya-Castro Ingrid U. Schraufstatter 《Journal of Biomedical Science and Engineering》 2013年第8期1-13,共13页
A major portion of the beneficial effect of mesenchymal stem cells (MSC) is due to the production of trophic and angiogenic factors by these cells, and one of the efforts to improve the therapeutic efficacy of these c... A major portion of the beneficial effect of mesenchymal stem cells (MSC) is due to the production of trophic and angiogenic factors by these cells, and one of the efforts to improve the therapeutic efficacy of these cells lies in enhancing this capacity. Since there is complement activation in all areas of tissue injury, and both C3a and C5a activate MSC, it was asked whether stimulation with C3a or C5a would upregulate the production of trophic factors by MSC. C3a caused significant up-regulation of various angiogenic factors, including VEGF, CXCL8/IL-8 and IL-6. In contrast there was no detectable production of the pro-inflammatory cytokines TNF-α and IL-1β in spite of nuclear translocation of NFκB. Although C5a also caused moderate up-regulation of angiogenic factors, the effect was borderline significant. Furthermore the production of angiogenic factors induced by C3a was of physiological relevance: Supernatants of MSCs cultured under serum-free conditions induced minimal tube formation of HUVECs as an in vitro measure of angiogenesis;tube formation was considerably enhanced, when supernatants from C3a-stimulated MSC were used, while C3a itself had no direct angiogenic effect on HUVECs. The signaling cascade responsible for the production of angiogenic factors by C3a or C5a could be defined as activation of the rho cascade which was necessary for nuclear translocation of NFκB p65 and of phospho-ERK1/2. Although rho was only transiently activated, inhibition of the rho or “downstream of it” of the NFκB pathway, prevented C3a-and C5a-induced up-regulation of angiogenic factors. 展开更多
关键词 MSC C3A C5A Angiogenic Factor Produc-tion signalING pathways
下载PDF
Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage 被引量:1
20
作者 Liu-Lin Xiong Lu-Lu Xue +7 位作者 Mohammed Al-Hawwas Jin Huang Rui-Ze Niu Ya-Xin Tan Yang Xu Ying-Ying Su Jia Liu Ting-Hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第1期86-95,共10页
A single-nucleotide polymorphism(SNP)is an alteration in one nucleotide in a certain position within a genome.SNPs are associated with disease susceptibility.However,the influences of SNPs on the pathogenesis of neona... A single-nucleotide polymorphism(SNP)is an alteration in one nucleotide in a certain position within a genome.SNPs are associated with disease susceptibility.However,the influences of SNPs on the pathogenesis of neonatal hypoxic-ischemic brain damage remain elusive.Seven-day-old rats were used to establish a hypoxic ischemic encephalopathy model.SNPs and expression profiles of mRNAs were analyzed in hypoxic ischemic encephalopathy model rats using RNA sequencing.Genes exhibiting SNPs associated with hypoxic ischemic encephalopathy were identified and studied by gene ontology and pathway analysis to identify their possible involvement in the disease mechanism.We identified 89 up-regulated genes containing SNPs that were mainly located on chromosome 1 and 2.Gene ontology analysis indicated that the up-regulated genes containing SNPs are mainly involved in angiogenesis,wound healing and glutamatergic synapse and biological processing of calcium-activated chloride channels.Signaling pathway analysis indicated that the differentially expressed genes play a role in glutamatergic synapses,long-term depression and oxytocin signaling.Moreover,intersection analysis of high throughput screening following PubMed retrieval and RNA sequencing for SNPs showed that CSRNP1,DUSP5 and LRRC25 were most relevant to hypoxic ischemic encephalopathy.Significant up-regulation of genes was confirmed by quantitative real-time polymerase chain reaction analysis of oxygen-glucose-deprived human fetal cortical neurons.Our results indicate that CSRNP1,DUSP5 and LRRC25,containing SNPs,may be involved in the pathogenesis of hypoxic ischemic encephalopathy.These findings indicate a novel direction for further hypoxic ischemic encephalopathy research.This animal study was approved on February 5,2017 by the Animal Care and Use Committee of Kunming Medical University,Yunnan Province,China(approval No.kmmu2019038).Cerebral tissue collection from a human fetus was approved on September 30,2015 by the Ethics Committee of Kunming Medical University,China(approval No.2015-9). 展开更多
关键词 CSRNP1 DUSP5 gene ontology ANALYSIS human FETAL cortical neurons LRRC25 mRNA NEONATAL HYPOXIC ISCHEMIC ENCEPHALOPATHY pathogenesis signaling pathway ANALYSIS
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部