Nowadays,the widespread application of 5G has promoted rapid development in different areas,particularly in the Internet of Things(IoT),where 5G provides the advantages of higher data transfer rate,lower latency,and w...Nowadays,the widespread application of 5G has promoted rapid development in different areas,particularly in the Internet of Things(IoT),where 5G provides the advantages of higher data transfer rate,lower latency,and widespread connections.Wireless sensor networks(WSNs),which comprise various sensors,are crucial components of IoT.The main functions of WSN include providing users with real-time monitoring information,deploying regional information collection,and synchronizing with the Internet.Security in WSNs is becoming increasingly essential because of the across-the-board nature of wireless technology in many fields.Recently,Yu et al.proposed a user authentication protocol forWSN.However,their design is vulnerable to sensor capture and temporary information disclosure attacks.Thus,in this study,an improved protocol called PSAP-WSNis proposed.The security of PSAP-WSN is demonstrated by employing the ROR model,BAN logic,and ProVerif tool for the analysis.The experimental evaluation shows that our design is more efficient and suitable forWSN environments.展开更多
Recently,a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks(WSN).In routing,the trust system includes or avoids nodes related to the estimated trust values in t...Recently,a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks(WSN).In routing,the trust system includes or avoids nodes related to the estimated trust values in the routing function.This article introduces Enhanced Metaheuristics with Trust Aware Secure Route Selection Protocol(EMTA-SRSP)for WSN.The presented EMTA-SRSP technique majorly involves the optimal selection of routes in WSN.To accomplish this,the EMTA-SRSP technique involves the design of an oppositional Aquila optimization algorithm to choose safe routes for data communication.For the clustering process,the nodes with maximum residual energy will be considered cluster heads(CHs).In addition,the OAOA technique gets executed to choose optimal routes based on objective functions with multiple parameters such as energy,distance,and trust degree.The experimental validation of the EMTA-SRSP technique is tested,and the results exhibited a better performance of the EMTA-SRSP technique over other approaches.展开更多
The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs...The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).展开更多
Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during th...Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during the operational cycle,which results in the packet delivery latency increased significantly on the multiple hops path.To reduce the packet delivery latency on multi-hop path and energy waste of the sender's idle listening,a new low latency routing-enhanced asynchronous duty-cycle MAC protocol was presented,called REA-MAC.In REA-MAC,each sensor node decided when it waked up to send the beacon based on cross-layer routing information.Furthermore,the sender adaptively waked up based on the relationship between the transmission request time and the wakeup time of its next hop node.The simulation results show that REA-MAC reduces delivery latency by 60% compared to RI-MAC and reduces 8.77% power consumption on average.Under heavy traffic,REA-MAC's throughput is 1.48 times of RI-MAC's.展开更多
To design an energy-efficient Medium Access Control(MAC)protocol for the Underwater Wireless Sensor Networks(UWSNs)is an urgent research issue since depleted batteries cannot be recharged or replaced in the underwater...To design an energy-efficient Medium Access Control(MAC)protocol for the Underwater Wireless Sensor Networks(UWSNs)is an urgent research issue since depleted batteries cannot be recharged or replaced in the underwater environment.Moreover,the underwater acoustic channels are affected by hindrances such as long propagation delay and limited bandwidth,which appear in the design of the MAC protocol for the UWSNs.The available MAC protocols for the terrestrial wireless sensor networks exhibit low performance in energy efficiency,throughput and reliability in the UWSNs,and cannot be used in the UWSNs directly because of their unique characteristics.This paper proposes a synchronous duty-cycled reservation-based MAC protocol named Ordered Contention MAC(OCMAC)protocol.The basic mechanism of this protocol is to schedule data transmission by transmitters through the scheduling of Ready To Send(RTS)frames.The protocol eliminates the possible collision during data transmission and improves communication efficiency.The paper analyzes the performance in energy efficiency,throughput and reliability of the protocol by modeling the queuing behavior of OCMAC with a Markov Chain process.Furthermore,the analytical model is validated through a simulation study.The analysis results demonstrated that while providing good throughput and reliability,OCMAC can achieve energy saving.展开更多
Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a...Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.展开更多
Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce...Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.展开更多
Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is sc...Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.展开更多
Energy efficiency is a primary consideration in a wireless sensor network (WSN). This is also a major parameter when designing a medium access control (MAC) protocol for WSNs. Hierarchical clustering structure is rega...Energy efficiency is a primary consideration in a wireless sensor network (WSN). This is also a major parameter when designing a medium access control (MAC) protocol for WSNs. Hierarchical clustering structure is regarded suitable for WSNs due to its good performance in energy conservation. In this work, an adequately flexible mechanism for clustering WSNs is designed, in which some creative or promotional metrics are utilized, such as cluster head selection algorithm, cluster optional reconstruction, interested data transmission, multiple path routing protocol. All these strategies were cooperated to maximize energy saving of whole system. An appropriate MAC protocol for this mechanism is proposed, by flexibly switching the status of diverse sensor nodes in different strategies. The simulation results show that the proposed MAC protocol is suitable for clustering WSNs and performs well in aspects of energy efficiency, flexibility and scalability.展开更多
Reducing the energy consumption of available resources is still a problem to be solved in Wireless Sensor Networks (WSNs). Many types of existing routing protocols are developed to save power consumption. In these pro...Reducing the energy consumption of available resources is still a problem to be solved in Wireless Sensor Networks (WSNs). Many types of existing routing protocols are developed to save power consumption. In these protocols, cluster-based routing protocols are found to be more energy efficient. A cluster head is selected to aggregate the data received from root nodes and forwards these data to the base station in cluster-based routing. The selection of cluster heads should be efficient to save energy. In our proposed protocol, we use static clustering for the efficient selection of cluster heads. The proposed routing protocol works efficiently in large as well as small areas. For an optimal number of cluster head selection we divide a large sensor field into rectangular clusters. Then these rectangular clusters are further grouped into zones for efficient communication between cluster heads and a base station. We perform MATLAB simulations to observe the network stability, throughput, energy consumption, network lifetime and the number of cluster heads. Our proposed routing protocol outperforms in large areas in comparison with the LEACH, MH-LEACH, and SEP routing protocols.展开更多
The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how...The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide...Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide the application. Theoretical analysis and comparison are one of the key steps in the protocol research. Restricted by irreversible factors of power and others, lifetime of wireless sensor networks is very short. In this paper, we analyze and compare the characteristics and application fields of existing protocols. On the basis of that, this paper mainly proposes an improved directed diffusion exploring the phase of reinforcing path, which chooses the way to strengthen the path after evaluating the critical factors. It was determined by simulation that improved directed diffusion has a higher transmission rate, and it satisfies the requirements, which balancing the energy consumption and prolonging the lifetime.展开更多
New wireless sensor network applications (e.g., military surveillance) require higher reliability than a simple best effort service could provide. Classical reliable transport protocols like Transmission Control Proto...New wireless sensor network applications (e.g., military surveillance) require higher reliability than a simple best effort service could provide. Classical reliable transport protocols like Transmission Control Protocol (TCP) are not well suited for wireless sensor networks due to both the characteristics of the network nodes (low computing power, strong energy constraints) and those of the main applications running on those nodes (low data rates). Recent researches present new transport protocols for wireless sensor networks providing various type of reliability and using new mechanisms for loss detection and recovery, and congestion control. This paper presents a survey on reliable transport protocol for WSNs.展开更多
Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of ...Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.展开更多
Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this p...Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this paper we propose a Fuzzy Energy Aware tree-based Routing (FEAR) protocol that aims to enhance existing tree-based routing protocols and prolong the network’s life time by considering sensors’ limited energy. The design and implementation of the new protocol is based on cross-layer structure where information from different layers are utilized to achieve the best power saving. Each node maintains a list of its neighbors in order to use neighbors’links in addition to the parent-child links. The protocol is tested and compared with other tree-based protocols and the simulation results show that FEAR protocol is more energy-efficient than comparable protocols. According to the results FEAR protocol saves up to 70.5% in the number of generated control messages and up to 55.08% in the consumed power.展开更多
In recent years, we have seen an increasing interest in developing and designing Wireless Sensor Networks (WSNs). WSNs consist of large number of nodes, with wireless communications and computation abilities that can ...In recent years, we have seen an increasing interest in developing and designing Wireless Sensor Networks (WSNs). WSNs consist of large number of nodes, with wireless communications and computation abilities that can be used in variety of domains. It has been used in areas that have direct contact with monitoring and gathering data, to name few, health monitoring, military surveillance, geological monitoring (Earthquakes, Volcanoes, Tsunami), agriculture control and many more. However, the design and implementation of WSNs face many challenges, due to the power limitation of sensor nodes, deployment and localization, data routing and data aggregation, data security, limited bandwidth, storage capacity and network management. It is known that Operation Research (OR) has been widely used in different areas to solve optimization problems;such as improving network performance and maximizing lifetime of system. In this survey, we present the most recent OR based techniques applied to solve different WSNs problems: the node scheduling problem, energy management problems, nodes allocating issues and other WSNs related complex problems. Different Operational Research techniques are presented and discussed in details here, including graph theory based techniques, linear programing and mixed integer programming related approaches.展开更多
Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency ar...Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.展开更多
This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at ...This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.展开更多
文摘Nowadays,the widespread application of 5G has promoted rapid development in different areas,particularly in the Internet of Things(IoT),where 5G provides the advantages of higher data transfer rate,lower latency,and widespread connections.Wireless sensor networks(WSNs),which comprise various sensors,are crucial components of IoT.The main functions of WSN include providing users with real-time monitoring information,deploying regional information collection,and synchronizing with the Internet.Security in WSNs is becoming increasingly essential because of the across-the-board nature of wireless technology in many fields.Recently,Yu et al.proposed a user authentication protocol forWSN.However,their design is vulnerable to sensor capture and temporary information disclosure attacks.Thus,in this study,an improved protocol called PSAP-WSNis proposed.The security of PSAP-WSN is demonstrated by employing the ROR model,BAN logic,and ProVerif tool for the analysis.The experimental evaluation shows that our design is more efficient and suitable forWSN environments.
基金This research was supported by the Universiti Sains Malaysia(USM)and the Ministry of Higher Education Malaysia through Fundamental Research GrantScheme(FRGS-Grant No:FRGS/1/2020/TK0/USM/02/1).
文摘Recently,a trust system was introduced to enhance security and cooperation between nodes in wireless sensor networks(WSN).In routing,the trust system includes or avoids nodes related to the estimated trust values in the routing function.This article introduces Enhanced Metaheuristics with Trust Aware Secure Route Selection Protocol(EMTA-SRSP)for WSN.The presented EMTA-SRSP technique majorly involves the optimal selection of routes in WSN.To accomplish this,the EMTA-SRSP technique involves the design of an oppositional Aquila optimization algorithm to choose safe routes for data communication.For the clustering process,the nodes with maximum residual energy will be considered cluster heads(CHs).In addition,the OAOA technique gets executed to choose optimal routes based on objective functions with multiple parameters such as energy,distance,and trust degree.The experimental validation of the EMTA-SRSP technique is tested,and the results exhibited a better performance of the EMTA-SRSP technique over other approaches.
文摘The inception of Wireless Sensor Networks (WSN) has brought convenience into many lives with uninterrupted wireless network. The nodes that transmit data consist of heterogeneous and battery equipped sensor nodes (SNs) that are deployed randomly for network surveillance. To manage the random deployment of nodes, clustering algorithms are used with efficient routing protocols. This results in aggregation and dropping of redundant data packets that enables flawless data transmission from cluster nodes to Base Station (BS) via Cluster Heads (CHs). In this paper, a dynamic and multi-hop clustering and routing protocol for thorough behavior analysis is proposed, taking distance and energy into consideration. This forms a smooth routing path from the cluster nodes, CHs, Sub-CHs to the BS. On comparing proposed process with the existing system, experimental analysis shows a significant enhancement in the performance of network lifetime, with improved data aggregation, throughput, as the protocol showing deterministic behavior while traversing the network for data transmission, we name this protocol as Multi-hop Deterministic energy efficient Routing protocol (MDR).
基金Projects(61103011,61170261) supported by the National Natural Science Foundation of China
文摘Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during the operational cycle,which results in the packet delivery latency increased significantly on the multiple hops path.To reduce the packet delivery latency on multi-hop path and energy waste of the sender's idle listening,a new low latency routing-enhanced asynchronous duty-cycle MAC protocol was presented,called REA-MAC.In REA-MAC,each sensor node decided when it waked up to send the beacon based on cross-layer routing information.Furthermore,the sender adaptively waked up based on the relationship between the transmission request time and the wakeup time of its next hop node.The simulation results show that REA-MAC reduces delivery latency by 60% compared to RI-MAC and reduces 8.77% power consumption on average.Under heavy traffic,REA-MAC's throughput is 1.48 times of RI-MAC's.
文摘To design an energy-efficient Medium Access Control(MAC)protocol for the Underwater Wireless Sensor Networks(UWSNs)is an urgent research issue since depleted batteries cannot be recharged or replaced in the underwater environment.Moreover,the underwater acoustic channels are affected by hindrances such as long propagation delay and limited bandwidth,which appear in the design of the MAC protocol for the UWSNs.The available MAC protocols for the terrestrial wireless sensor networks exhibit low performance in energy efficiency,throughput and reliability in the UWSNs,and cannot be used in the UWSNs directly because of their unique characteristics.This paper proposes a synchronous duty-cycled reservation-based MAC protocol named Ordered Contention MAC(OCMAC)protocol.The basic mechanism of this protocol is to schedule data transmission by transmitters through the scheduling of Ready To Send(RTS)frames.The protocol eliminates the possible collision during data transmission and improves communication efficiency.The paper analyzes the performance in energy efficiency,throughput and reliability of the protocol by modeling the queuing behavior of OCMAC with a Markov Chain process.Furthermore,the analytical model is validated through a simulation study.The analysis results demonstrated that while providing good throughput and reliability,OCMAC can achieve energy saving.
文摘Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.
基金supported by the National Basic Research Program of China (973 Program) (2010CB731800)the National Natural Science Foundation of China (60934003+2 种基金 60974123 60804010)the Hebei Provincial Educational Foundation of China (2008147)
文摘Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.
文摘Recently, location-based routings in wireless sensor networks (WSNs) are attracting a lot of interest in the research community, especially because of its scalability. In location-based routing, the network size is scalable without increasing the signalling overhead as routing decisions are inherently localized. Here, each node is aware of its position in the network through some positioning device like GPS and uses this information in the routing mechanism. In this paper, we first discuss the basics of WSNs including the architecture of the network, energy consumption for the components of a typical sensor node, and draw a detailed picture of classification of location-based routing protocols. Then, we present a systematic and comprehensive taxonomy of location-based routing protocols, mostly for sensor networks. All the schemes are subsequently discussed in depth. Finally, we conclude the paper with some insights on potential research directions for location-based routing in WSNs.
文摘Energy efficiency is a primary consideration in a wireless sensor network (WSN). This is also a major parameter when designing a medium access control (MAC) protocol for WSNs. Hierarchical clustering structure is regarded suitable for WSNs due to its good performance in energy conservation. In this work, an adequately flexible mechanism for clustering WSNs is designed, in which some creative or promotional metrics are utilized, such as cluster head selection algorithm, cluster optional reconstruction, interested data transmission, multiple path routing protocol. All these strategies were cooperated to maximize energy saving of whole system. An appropriate MAC protocol for this mechanism is proposed, by flexibly switching the status of diverse sensor nodes in different strategies. The simulation results show that the proposed MAC protocol is suitable for clustering WSNs and performs well in aspects of energy efficiency, flexibility and scalability.
文摘Reducing the energy consumption of available resources is still a problem to be solved in Wireless Sensor Networks (WSNs). Many types of existing routing protocols are developed to save power consumption. In these protocols, cluster-based routing protocols are found to be more energy efficient. A cluster head is selected to aggregate the data received from root nodes and forwards these data to the base station in cluster-based routing. The selection of cluster heads should be efficient to save energy. In our proposed protocol, we use static clustering for the efficient selection of cluster heads. The proposed routing protocol works efficiently in large as well as small areas. For an optimal number of cluster head selection we divide a large sensor field into rectangular clusters. Then these rectangular clusters are further grouped into zones for efficient communication between cluster heads and a base station. We perform MATLAB simulations to observe the network stability, throughput, energy consumption, network lifetime and the number of cluster heads. Our proposed routing protocol outperforms in large areas in comparison with the LEACH, MH-LEACH, and SEP routing protocols.
基金supported by the National Natural Science Foundation of China(Grant No.61571303,No.61571004)the Shanghai Natural Science Foundation(Grant No.21ZR1461700)+3 种基金the Shanghai Sailing Program(Grant No.19YF1455800)the National Science and Technology Major Project of China(No.2018ZX03001031)the Fundamental Research Funds for State Key Laboratory of Synthetical Automation for Process Industries(Grant No.PAL-N201703)the National Key Research and Development Program of China-Internet of Things and Smart City Key Program(No.2019YFB2101600,NO.2019YFB2101602,No.2019YFB2101602-03).
文摘The single planar routing protocol has a slow convergence rate in the large-scale Wireless Sensor Network(WSN).Although the hierarchical routing protocol can effectively cope with large-scale application scenarios,how to elect a secure cluster head and balance the network load becomes an enormous challenge.In this paper,a Trust Management-based and Low Energy Adaptive Clustering Hierarchy protocol(LEACH-TM)is proposed.In LEACH-TM,by using the number of dynamic decision cluster head nodes,residual energy and density of neighbor nodes,the size of the cluster can be better constrained to improve energy efficiency,and avoid excessive energy consumption of a node.Simultaneously,the trust management scheme is introduced into LEACH-TM to defend against internal attacks.The simulation results show that,compared with LEACH-SWDN protocol and LEACH protocol,LEACH-TM outperforms in prolonging the network lifetime and balancing the energy consumption,and can effectively mitigate the influence of malicious nodes on cluster head selection,which can greatiy guarantee the security of the overall network.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
文摘Routing protocols are perceived to be growing hotspots and required to devote more time and work to studying it. Research on routing protocols of wireless sensor networks is significantly important to accurately guide the application. Theoretical analysis and comparison are one of the key steps in the protocol research. Restricted by irreversible factors of power and others, lifetime of wireless sensor networks is very short. In this paper, we analyze and compare the characteristics and application fields of existing protocols. On the basis of that, this paper mainly proposes an improved directed diffusion exploring the phase of reinforcing path, which chooses the way to strengthen the path after evaluating the critical factors. It was determined by simulation that improved directed diffusion has a higher transmission rate, and it satisfies the requirements, which balancing the energy consumption and prolonging the lifetime.
文摘New wireless sensor network applications (e.g., military surveillance) require higher reliability than a simple best effort service could provide. Classical reliable transport protocols like Transmission Control Protocol (TCP) are not well suited for wireless sensor networks due to both the characteristics of the network nodes (low computing power, strong energy constraints) and those of the main applications running on those nodes (low data rates). Recent researches present new transport protocols for wireless sensor networks providing various type of reliability and using new mechanisms for loss detection and recovery, and congestion control. This paper presents a survey on reliable transport protocol for WSNs.
文摘Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.
文摘Wireless Sensor Networks (WSNs) are used in different civilian, military, and industrial applications. Recently, many routing protocols have been proposed attempting to find suitable routes to transmit data. In this paper we propose a Fuzzy Energy Aware tree-based Routing (FEAR) protocol that aims to enhance existing tree-based routing protocols and prolong the network’s life time by considering sensors’ limited energy. The design and implementation of the new protocol is based on cross-layer structure where information from different layers are utilized to achieve the best power saving. Each node maintains a list of its neighbors in order to use neighbors’links in addition to the parent-child links. The protocol is tested and compared with other tree-based protocols and the simulation results show that FEAR protocol is more energy-efficient than comparable protocols. According to the results FEAR protocol saves up to 70.5% in the number of generated control messages and up to 55.08% in the consumed power.
文摘In recent years, we have seen an increasing interest in developing and designing Wireless Sensor Networks (WSNs). WSNs consist of large number of nodes, with wireless communications and computation abilities that can be used in variety of domains. It has been used in areas that have direct contact with monitoring and gathering data, to name few, health monitoring, military surveillance, geological monitoring (Earthquakes, Volcanoes, Tsunami), agriculture control and many more. However, the design and implementation of WSNs face many challenges, due to the power limitation of sensor nodes, deployment and localization, data routing and data aggregation, data security, limited bandwidth, storage capacity and network management. It is known that Operation Research (OR) has been widely used in different areas to solve optimization problems;such as improving network performance and maximizing lifetime of system. In this survey, we present the most recent OR based techniques applied to solve different WSNs problems: the node scheduling problem, energy management problems, nodes allocating issues and other WSNs related complex problems. Different Operational Research techniques are presented and discussed in details here, including graph theory based techniques, linear programing and mixed integer programming related approaches.
文摘Wireless sensor networks (WSNs) attract considerable amount of research efforts from both industry and academia. With limited power and computational capability available on a sensor node, robustness and efficiency are the main concerns when designing a routing protocol for WSNs with low complexity. There are various existing design approaches, such as data-centric approach, hierarchical approach and location-based approach, which were designed for a particular application with specific requirements. In this paper, we study the design and implementation of a routing protocol for data acquisition in WSNs. The designed routing protocol is named Centralized Sensor Protocol for Information via Negotiation (CSPIN), which essentially combines the advertise-request-transfer process and a routing distribution mechanism. Implementation is realized and demonstrated with the Crossbow MicaZ hardware using nesC/TinyOS. It was our intention to provide a hand-on study of implementation of centralized routing protocol for WSNs.
文摘This paper presents a novel real-time routing protocol, called CBRR, with less energy consumption for wireless sensor networks (WSNs). End-to-End real-time requirements are fulfilled with speed or delay constraint at each hop through integrating the contention and neighbor table mechanisms. More precisely, CBRR maintains a neighbor table via the contention mechanism being dependent on wireless broadcast instead of beacons. Comprehensive simulations show that CBRR can not only achieve higher performance in static networks, but also work well for dynamic networks.