Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter da...Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.展开更多
Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational signif...Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.展开更多
The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on ...The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.展开更多
The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important app...The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important applications of the radar altimeter data.The radar altimeter data of the HY-2A satellite from November 1,2011 to August 16,2014 are used herein to extract global ocean tides.The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis based on the least squares method.Considering tide aliasing issues,the analysis of the alias periods and alias synodic periods of different tidal constituents shows that only the tidal constituents M_(2),N_(2),and K_(2)are retrieved precisely by the HY-2A RA data.The derived tidal constants of the tidal constituents M_(2),N_(2)and K_(2)are compared to those of tidal gauge data and the TPXO tide model results.The comparison between the derived results and the tidal gauge data shows that the RMSEs of the tidal amplitude and phase lag are 9.6 cm and 13.34°,2.4 cm and 10.47°,and 8.1 cm and 14.19°for tidal constituents M_(2),N_(2),and K_(2),respectively.The comparisons of the semidiurnal tides with the TPXO model results show that tidal constituents have good consistency with the TPXO model results.These findings confirm the good performance of HY-2A RA for retrieving semidiurnal tides in the global ocean.展开更多
GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeter...GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.展开更多
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have...A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.展开更多
The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite alt...The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite altimeter provides sea surface height(SSH),significant wave height(SWH),sea surface wind(SSW)speed,and polar ice sheet elevation,while the HY-2 satellite scatterometer provides SSW fields.At the same time,other oceanic and atmospheric parameters such as sea surface temperature(SST)and wind speed,water vapor and liquid water content can also be obtained by its onboard scanning microwave radiometer.In this paper,we show the data processing methods of the HY-2 satellite’s payloads.The preliminary results show that wind vector,SSH,SWH,and SST conform to the designed technical specifications.展开更多
基金The National Natural Science Foundation of China under contract No.42076235.
文摘Antarctic sea ice is an important part of the Earth’s atmospheric system,and satellite remote sensing is an important technology for observing Antarctic sea ice.Whether Chinese Haiyang-2B(HY-2B)satellite altimeter data could be used to estimate sea ice freeboard and provide alternative Antarctic sea ice thickness information with a high precision and long time series,as other radar altimetry satellites can,needs further investigation.This paper proposed an algorithm to discriminate leads and then retrieve sea ice freeboard and thickness from HY-2B radar altimeter data.We first collected the Moderate-resolution Imaging Spectroradiometer ice surface temperature(IST)product from the National Aeronautics and Space Administration to extract leads from the Antarctic waters and verified their accuracy through Sentinel-1 Synthetic Aperture Radar images.Second,a surface classification decision tree was generated for HY-2B satellite altimeter measurements of the Antarctic waters to extract leads and calculate local sea surface heights.We then estimated the Antarctic sea ice freeboard and thickness based on local sea surface heights and the static equilibrium equation.Finally,the retrieved HY-2B Antarctic sea ice thickness was compared with the CryoSat-2 sea ice thickness and the Antarctic Sea Ice Processes and Climate(ASPeCt)ship-based observed sea ice thickness.The results indicate that our classification decision tree constructed for HY-2B satellite altimeter measurements was reasonable,and the root mean square error of the obtained sea ice thickness compared to the ship measurements was 0.62 m.The proposed sea ice thickness algorithm for the HY-2B radar satellite fills a gap in this application domain for the HY-series satellites and can be a complement to existing Antarctic sea ice thickness products;this algorithm could provide long-time-series and large-scale sea ice thickness data that contribute to research on global climate change.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 201105032,201305032 and 201005030the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A505+2 种基金Global Change and Air-Sea Interaction Project of China under contract No.GASI-03-03-01-01the International Science&Technology Cooperation Program of China under contract No.2011DFA22260the Open funds of State Key Laboratory of Satellite Ocean Environment Dynamics under contract No.SOED1411
文摘Chinese Haiyang-2(HY-2) satellite is the first Chinese marine dynamic environment satellite. The dual-frequency (Ku and C band) radar altimeter onboard HY-2 has been working effective to provide operational significant wave height (SWH) for more than three years (October 1, 2011 to present).We validated along-track Ku-band SWH data of HY-2 satellite against National Data Buoy Center (NDBC) in-situ measurements over a time period of three years from October 1, 2011 to September 30, 2014, the root mean square error (RMSE) and mean bias of HY-2 SWH is 0.38 m and (-0.13±0.35) m, respectively. We also did cross validation against Jason-2 altimeter SWH data, the RMSE and the mean bias is 0.36m and (-0.22±0.28) m, respectively. In order to compare the statistical results between HY-2 and Jason-2 satellite SWH data, we validated the Jason-2 satellite radar altimeter along-track Ku-band SWH data against NDBC measurements using the same method. The results demonstrate the validation method in this study is scientific and the RMSE and mean bias of Jason-2 SWH data is 0.26 m and (0.00±0.26) m, respectively. We also validated both HY-2 and Jason-2 SWH data every month, the mean bias of Jason-2 SWH data almost equaled to zero all the time, while the mean bias of HY-2 SWH data was no less than -0.31m before April 2013 and dropped to zero after that time. These results indicate that the statistical results for HY-2 altimeter SWH are reliable and HY-2 altimeter along-track SWH data were steady and of high quality in the last three years. The results also indicate that HY-2 SWH data have greatly been improved and have the same accuracy with Jason-2 SWH data after April, 2013. SWH data provided by HY-2 satellite radar altimeter are useful and acceptable for ocean operational applications.
基金The National Key Research and Development Program of China under contract No.2016YFC1401004the National Natural Science Foundation of China under contract No.41406207
文摘The HY-2A satellite is China’s first independent oceanic dynamic environmental satellite,and has been operating continuously for more than six years.The satellite’s radar altimeter,which is one of the main loads on the satellite,has the ability to realize all-weather and all-day observations of global sea-surface heights,as well as significant wave heights and sea-surface wind speeds.These observed data have been widely used in marine disaster prevention and reduction,along with resource development,maritime security and other fields.In order to achieve a comprehensive understanding of the multi-year overall observational performances of the HY-2A satellite’s radar altimeter,all of the observational data of the IGDR product from October 26,2012 to August 27,2017 were selected in this study for a comprehensive evaluation.The height measurement capability of the HY-2A satellite’s radar altimeter was evaluated using self-crossover and Jason-2 crossover methods.The height discrepancies at the self-crossover point of the HY-2A satellite’s ascending and descending orbits were also calculated.It was found that for the HY-2A satellite’s radar altimeter in global waters under the restriction conditions of ascending and descending orbits,the height anomaly differences were within a range of less than 30 cm.The absolute mean error was determined to be 5.81 cm,and the height anomaly standard deviation was 7.76 cm.Under the conditions of the observational areas being limited within a scope of 60°from the Equator,it was determined that the sea-level height anomaly differences were less than 10 cm at the junction of the ascending and descending orbits,the absolute mean error was 3.95 cm.In addition,the sea-level height anomaly standard deviation was observed to be 4.76cm.Using a mutual cross method with the Jason-2 satellite,it was found that under the conditions of the observational area being within the scope of 66°from the equator,the height anomaly differences at the junction were less than 30cm,and the absolute mean error of HY-2A and Jason-2 sea level height anomaly was 5.86 cm,with a standard deviation of 7.52 cm.It was observed that,if within the sea area the sea level height anomaly difference was limited to within 10cm,then the absolute mean error and standard deviation could reach 4.19cm and 4.98cm,respectively.It was confirmed that the HY-2A satellite’s radar altimeter had successfully reached the height measurement level of similar international altimeters.Therefore,it had the ability to meet the needs of marine scientific research and ocean circulation inversions.
基金The National Key Research and Development Program of China under contract No.2016YFC1401801.
文摘The HY-2A satellite,which is equipped with a radar altimeter and was launched on August 16,2011,is the first Chinese marine dynamic environmental monitoring satellite.Extracting ocean tides is one of the important applications of the radar altimeter data.The radar altimeter data of the HY-2A satellite from November 1,2011 to August 16,2014 are used herein to extract global ocean tides.The constants representing the tidal constituents are extracted by HY-2A RA data with harmonic analysis based on the least squares method.Considering tide aliasing issues,the analysis of the alias periods and alias synodic periods of different tidal constituents shows that only the tidal constituents M_(2),N_(2),and K_(2)are retrieved precisely by the HY-2A RA data.The derived tidal constants of the tidal constituents M_(2),N_(2)and K_(2)are compared to those of tidal gauge data and the TPXO tide model results.The comparison between the derived results and the tidal gauge data shows that the RMSEs of the tidal amplitude and phase lag are 9.6 cm and 13.34°,2.4 cm and 10.47°,and 8.1 cm and 14.19°for tidal constituents M_(2),N_(2),and K_(2),respectively.The comparisons of the semidiurnal tides with the TPXO model results show that tidal constituents have good consistency with the TPXO model results.These findings confirm the good performance of HY-2A RA for retrieving semidiurnal tides in the global ocean.
基金Supported by the National Key R&D Program of China(No.2016YFC1401003)the National Natural Science Foundation of China(Nos.41406204,41501417)the Marine Public Welfare Project of China(No.201305032-3)
文摘GPS buoy methodology is one of the main calibration methodologies for altimeter sea surface height calibration. This study introduces the results of the Qinglan calibration campaign for the HY-2A and Jason-2 altimeters. It took place in two time slices;one was from August to September 2014, and the other was in July 2015. One GPS buoy and two GPS reference stations were used in this campaign. The GPS data were processed using the real-time kinematic (RTK) technique. The fi nal error budget estimate when measuring the sea surface height (SSH) with a GPS buoy was better than 3.5 cm. Using the GPS buoy, the altimeter bias estimate was about -2.3 cm for the Jason-2 Geophysical Data Record (GDR) Version ‘D' and from -53.5 cm to -75.6 cm for the HY-2A Interim Geophysical Data Record (IGDR). The bias estimates for Jason-2 GDR-D are similar to the estimates from dedicated calibration sites such as the Harvest Platform, the Crete Site and the Bass Strait site. The bias estimates for HY-2A IGDR agree well with the results from the Crete calibration site. The results for the HY-2A altimeter bias estimated by the GPS buoy were verifi ed by cross-calibration, and they agreed well with the results from the global analysis method.
文摘A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.
基金supported by the National High-Tech Project of China(No.2008AA09A403)the Marine Public Welfare Project of China(No.201105032).
文摘The HY-2 satellite was successfully launched on 16 August 2011.It carried four microwave instruments into space for operationally observing dynamic ocean environment parameters on a global scale.The HY-2 satellite altimeter provides sea surface height(SSH),significant wave height(SWH),sea surface wind(SSW)speed,and polar ice sheet elevation,while the HY-2 satellite scatterometer provides SSW fields.At the same time,other oceanic and atmospheric parameters such as sea surface temperature(SST)and wind speed,water vapor and liquid water content can also be obtained by its onboard scanning microwave radiometer.In this paper,we show the data processing methods of the HY-2 satellite’s payloads.The preliminary results show that wind vector,SSH,SWH,and SST conform to the designed technical specifications.