Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. A...Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. Applying techniques developed in JB*-triple theory, we prove that f admits an extension to a surjective real linear isometry T : E → B. Among the consequences, we show that every surjective isometry between the unit spheres of two compact C*-algebras A and B, without assuming any restriction on the rank of their direct summands(and in particular when A = K(H) and B = K(H′)), extends to a surjective real linear isometry from A into B. These results provide new examples of infinite-dimensional Banach spaces where Tingley's problem admits a positive answer.展开更多
We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-tr...We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.展开更多
基金supported by the Spanish Ministry of Economy and Competitiveness and European Regional Development Fund (Grant No. MTM2014-58984-P)Junta de Andalucía (Grant No. FQM375)+1 种基金Grants-in-Aid for Scientific Research (Grant No. 16J01162)Japan Society for the Promotion of Science
文摘Let f : S(E) → S(B) be a surjective isometry between the unit spheres of two weakly compact JB*-triples not containing direct summands of rank less than or equal to 3. Suppose E has rank greater than or equal to 5. Applying techniques developed in JB*-triple theory, we prove that f admits an extension to a surjective real linear isometry T : E → B. Among the consequences, we show that every surjective isometry between the unit spheres of two compact C*-algebras A and B, without assuming any restriction on the rank of their direct summands(and in particular when A = K(H) and B = K(H′)), extends to a surjective real linear isometry from A into B. These results provide new examples of infinite-dimensional Banach spaces where Tingley's problem admits a positive answer.
基金I+D MEC Projects No.MTM 2005-02541,MTM 2004-03882Junta de Andalucfa Grants FQM 0199,FQM 0194,FQM 1215the PCI Project No.A/4044/05 of the Spanish AECI
文摘We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.