In this paper, we find an analytic solution of the master equation of a non-resonant two-photon Jaynes- Cummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence o...In this paper, we find an analytic solution of the master equation of a non-resonant two-photon Jaynes- Cummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence of phase damping on non-classical effects in the JCM, such as oscillations of the photon-number distribution, revivals of the atomic inversion, and sub-Possion photon statistics. It is demonstrated that the phase damping suppresses the revivals of the atomic inversion and non-classical effects of the cavity field in the JCM.展开更多
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10274093, 10474118, and 10474120, the Natural Science Foundation of Hunan Province of China under Grant No. 05JJ3005, the Youth-Core Teachers Foundation of Hunan Province of China under Grant No. 2003165, and the Science Research Foundation of Educational Department of Hunan Province of China under Grant No. 05C756
文摘In this paper, we find an analytic solution of the master equation of a non-resonant two-photon Jaynes- Cummings model (JCM) with phase damping with the help of the super-operator technique. We study the influence of phase damping on non-classical effects in the JCM, such as oscillations of the photon-number distribution, revivals of the atomic inversion, and sub-Possion photon statistics. It is demonstrated that the phase damping suppresses the revivals of the atomic inversion and non-classical effects of the cavity field in the JCM.