期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effect of wall boundary condition on CFD simulation of CFB risers 被引量:6
1
作者 Xinyu Zhou Jinsen Gao +1 位作者 Chunming Xu Xingying Lan 《Particuology》 SCIE EI CAS CSCD 2013年第5期556-565,共10页
The effect of solid-phase wall boundary condition on the numerical simulation of gas-solid flow in CFB risers containing FCC particles was investigated using the two-fluid model incorporating the kinetic the- ory of g... The effect of solid-phase wall boundary condition on the numerical simulation of gas-solid flow in CFB risers containing FCC particles was investigated using the two-fluid model incorporating the kinetic the- ory of granular flow. Both the Gidaspow drag model and the EMMS-based drag model were used. The Johnson and Jackson (1987) wall boundary condition was applied to describe the interaction between particles and wall. Based on the experimental system of Li and Kwauk (1994), parametric studies of spec- ularity coefficient (cp = 1.0, 0.6, 0.0005, 0.00005, 0) and particle-wall restitution coefficient (ew = 0.6, 0.9, 0.95, 0.99, 0.999) were performed to evaluate their effects on axial voidage profile, solids flux, meso-scale and heterogeneous structures. Simulation results showed that solid-phase wall boundary condition had little effect on axial voidage profile when the Gidaspow drag model was used. However, the specular- ity coefficient ~a had a pronounced influence on flow behavior when the EMMS-based drag model was used, and a small specularity coefficient (cp = 0.00005, 0) could result in better agreement with exper- imental data. The particle-wall restitution coefficient ew plays but a minor role in the holistic flow characteristics. 展开更多
关键词 jcirculating fluidized bedBoundary conditionEMMSCFDSpecularity coefficientParticle-wall restitution coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部