A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high co...A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ.展开更多
This paper presents a new wavelet transform image coding method. On the basis of a hierarchical wavelet decomposition of images, entropy constrained vector quantization is employed to encode the wavelet coefficients...This paper presents a new wavelet transform image coding method. On the basis of a hierarchical wavelet decomposition of images, entropy constrained vector quantization is employed to encode the wavelet coefficients at all the high frequency bands with展开更多
In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is signif...In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically.展开更多
First of all a simple and practical rectangular transform is given,and then thevector quantization technique which is rapidly developing recently is introduced.We combinethe rectangular transform with vector quantizat...First of all a simple and practical rectangular transform is given,and then thevector quantization technique which is rapidly developing recently is introduced.We combinethe rectangular transform with vector quantization technique for image data compression.Thecombination cuts down the dimensions of vector coding.The size of the codebook can reasonablybe reduced.This method can reduce the computation complexity and pick up the vector codingprocess.Experiments using image processing system show that this method is very effective inthe field of image data compression.展开更多
A new remote sensing image coding scheme based on the wavelet transform and classified vector quantization (CVQ) is proposed. The original image is first decomposed into a hierarchy of 3 layers including 10 subimages ...A new remote sensing image coding scheme based on the wavelet transform and classified vector quantization (CVQ) is proposed. The original image is first decomposed into a hierarchy of 3 layers including 10 subimages by DWT. The lowest frequency subimage is compressed by scalar quantization and ADPCM. The high frequency subimages are compressed by CVQ to utilize the similarity among different resolutions while improving the edge quality and reducing computational complexity. The experimental results show that the proposed scheme has a better performance than JPEG, and a PSNR of reconstructed image is 31~33 dB with a rate of 0.2 bpp.展开更多
A new scheme is presented to design a rotated Barnes-Wall lattice based vector quantizer(LVQ). The construction method of the LVQ and its fast quantizing algorithm are described at first. Then gain-shape lattice vecto...A new scheme is presented to design a rotated Barnes-Wall lattice based vector quantizer(LVQ). The construction method of the LVQ and its fast quantizing algorithm are described at first. Then gain-shape lattice vector quantizer(GSLVQ) with LVQ as shape quantizer is discussed. Finally the GSLVQ is used in image-sequence coding and good experimental results are obtained.展开更多
This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is i...This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is inferior only to the best transform KLT. Its vector quantization can maintain the minimum quantization distortions and greatly increase the compression ratio. In order to improve compression efficiency, an adaptive strategy of selecting reserved region patterns is applied to preserving the high energy at the same compression ratio. The experiment results show that they are satisfactory at the compression ration ratio if greater than 20.展开更多
In this letter, a new Linde-Buzo-Gray (LBG)-based image compression method using Discrete Cosine Transform (DCT) and Vector Quantization (VQ) is proposed. A gray-level image is firstly decomposed into blocks, then eac...In this letter, a new Linde-Buzo-Gray (LBG)-based image compression method using Discrete Cosine Transform (DCT) and Vector Quantization (VQ) is proposed. A gray-level image is firstly decomposed into blocks, then each block is subsequently encoded by a 2D DCT coding scheme. The dimension of vectors as the input of a generalized VQ scheme is reduced. The time of encoding by a generalized VQ is reduced with the introduction of DCT process. The experimental results demonstrate the efficiency of the proposed method.展开更多
Image subbands can be obtained by using filterbank. Traditional compression method uses direct entropy coding for each subband. After studying the energy distribution in image subbands, we proposed a vector quantizati...Image subbands can be obtained by using filterbank. Traditional compression method uses direct entropy coding for each subband. After studying the energy distribution in image subbands, we proposed a vector quantization (VQ) coding algorithm to image subband. In the algorithm, vector quantizers were adaptively designed for high-frequency bands in an image. In particular, the edges of the image were examined and fewer bits were assigned to high-energy regions. The experimental result showed that the algorithm had higher SNR and higher compression ratio than possible by traditional subband coding, JPEG and JPEG 2000.展开更多
In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, first...In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, firstly we theoretically create a systematically organized codebook. Combined with another codebook created by Kohonen’s Self-Organizing Maps (SOM) method, an optimized codebook consisted of 2×2 codevectors for facial images is generated. Experimental results show face recognition using such a codebook is more efficient than the codebook consisted of 4×4 codevector used in conventional algorithm. The highest average recognition rate of 98.6% is obtained for 40 persons’ 400 images of publicly available face database of AT&T Laboratories Cambridge containing variations in lighting, posing, and expressions. A table look-up (TLU) method is also proposed for the speed up of the recognition processing. By applying this method in the quantization step, the total recognition processing time achieves only 28 msec, enabling real-time face recognition.展开更多
A method for fast and low bit-rate compression of digital holograms based on a new vector quantization (VQ) method known as the skip-dimension VQ (SDVQ) is proposed. Briefly, a complex hologram is converted into a...A method for fast and low bit-rate compression of digital holograms based on a new vector quantization (VQ) method known as the skip-dimension VQ (SDVQ) is proposed. Briefly, a complex hologram is converted into a real off-axis hologram, and partitioned into a set of image vectors. The image vectors are passed into a graphic processing unit (GPU), and compressed through SDVQ into a set of code indices considerably smaller in data size than the source hologram. Experimental evaluation reveals that our scheme is capable of compressing a digital hologram to a compression ratio of over 500 times, in approximately 20-22 ms.展开更多
文摘A mean-match correlation vector quantizer (MMCVQ) was presented for fast image encoding. In this algorithm, a sorted codebook is generated regarding the mean values of all codewords. During the encoding stage, high correlation of the adjacent image blocks is utilized, and a searching range is obtained in the sorted codebook according to the mean value of the current processing vector. In order to gain good performance, proper THd and NS are predefined on the basis of experimental experiences and additional distortion limitation. The expermental results show that the MMCVQ algorithm is much faster than the full-search VQ algorithm, and the encoding quality degradation of the proposed algorithm is only 0.3~0.4 dB compared to the full-search VQ.
文摘This paper presents a new wavelet transform image coding method. On the basis of a hierarchical wavelet decomposition of images, entropy constrained vector quantization is employed to encode the wavelet coefficients at all the high frequency bands with
文摘In this paper a novel coding method based on fuzzy vector quantization for noised image with Gaussian white-noise pollution is presented. By restraining the high frequency subbands of wavelet image the noise is significantly removed and coded with fuzzy vector quantization. The experimental result shows that the method can not only achieve high compression ratio but also remove noise dramatically.
文摘First of all a simple and practical rectangular transform is given,and then thevector quantization technique which is rapidly developing recently is introduced.We combinethe rectangular transform with vector quantization technique for image data compression.Thecombination cuts down the dimensions of vector coding.The size of the codebook can reasonablybe reduced.This method can reduce the computation complexity and pick up the vector codingprocess.Experiments using image processing system show that this method is very effective inthe field of image data compression.
文摘A new remote sensing image coding scheme based on the wavelet transform and classified vector quantization (CVQ) is proposed. The original image is first decomposed into a hierarchy of 3 layers including 10 subimages by DWT. The lowest frequency subimage is compressed by scalar quantization and ADPCM. The high frequency subimages are compressed by CVQ to utilize the similarity among different resolutions while improving the edge quality and reducing computational complexity. The experimental results show that the proposed scheme has a better performance than JPEG, and a PSNR of reconstructed image is 31~33 dB with a rate of 0.2 bpp.
基金Supported in part by subject 863-317 (China Communication 863 Programme)Fund of Xidian University and ISN National Key Lab
文摘A new scheme is presented to design a rotated Barnes-Wall lattice based vector quantizer(LVQ). The construction method of the LVQ and its fast quantizing algorithm are described at first. Then gain-shape lattice vector quantizer(GSLVQ) with LVQ as shape quantizer is discussed. Finally the GSLVQ is used in image-sequence coding and good experimental results are obtained.
文摘This paper presents a new method for image coding and compressing-ADCTVQ(Adptive Discrete Cosine Transform Vector Quantization). In this method, DCT conforms to visual properties and has an encoding ability which is inferior only to the best transform KLT. Its vector quantization can maintain the minimum quantization distortions and greatly increase the compression ratio. In order to improve compression efficiency, an adaptive strategy of selecting reserved region patterns is applied to preserving the high energy at the same compression ratio. The experiment results show that they are satisfactory at the compression ration ratio if greater than 20.
基金Partially supported by the National Natural Science Foundation of China (No.60572100), Foundation of State Key Laboratory of Networking and Switching Technology (China) and Science Foundation of Shenzhen City (200408).
文摘In this letter, a new Linde-Buzo-Gray (LBG)-based image compression method using Discrete Cosine Transform (DCT) and Vector Quantization (VQ) is proposed. A gray-level image is firstly decomposed into blocks, then each block is subsequently encoded by a 2D DCT coding scheme. The dimension of vectors as the input of a generalized VQ scheme is reduced. The time of encoding by a generalized VQ is reduced with the introduction of DCT process. The experimental results demonstrate the efficiency of the proposed method.
文摘Image subbands can be obtained by using filterbank. Traditional compression method uses direct entropy coding for each subband. After studying the energy distribution in image subbands, we proposed a vector quantization (VQ) coding algorithm to image subband. In the algorithm, vector quantizers were adaptively designed for high-frequency bands in an image. In particular, the edges of the image were examined and fewer bits were assigned to high-energy regions. The experimental result showed that the algorithm had higher SNR and higher compression ratio than possible by traditional subband coding, JPEG and JPEG 2000.
文摘In this paper, we present a theoretical codebook design method for VQ-based fast face recognition algorithm to im-prove recognition accuracy. Based on the systematic analysis and classification of code patterns, firstly we theoretically create a systematically organized codebook. Combined with another codebook created by Kohonen’s Self-Organizing Maps (SOM) method, an optimized codebook consisted of 2×2 codevectors for facial images is generated. Experimental results show face recognition using such a codebook is more efficient than the codebook consisted of 4×4 codevector used in conventional algorithm. The highest average recognition rate of 98.6% is obtained for 40 persons’ 400 images of publicly available face database of AT&T Laboratories Cambridge containing variations in lighting, posing, and expressions. A table look-up (TLU) method is also proposed for the speed up of the recognition processing. By applying this method in the quantization step, the total recognition processing time achieves only 28 msec, enabling real-time face recognition.
文摘A method for fast and low bit-rate compression of digital holograms based on a new vector quantization (VQ) method known as the skip-dimension VQ (SDVQ) is proposed. Briefly, a complex hologram is converted into a real off-axis hologram, and partitioned into a set of image vectors. The image vectors are passed into a graphic processing unit (GPU), and compressed through SDVQ into a set of code indices considerably smaller in data size than the source hologram. Experimental evaluation reveals that our scheme is capable of compressing a digital hologram to a compression ratio of over 500 times, in approximately 20-22 ms.