期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于机器学习J_(1)-J_(2)反铁磁海森伯自旋链相变点的识别方法 被引量:2
1
作者 王伟 揭泉林 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第23期171-179,共9页
通过序参量来研究量子相变是比较传统的做法,而从机器学习的角度研究相变是一块全新的领域.本文提出了先采用无监督学习算法中的高斯混合模型对J_(1)-J_(2)反铁磁海森伯自旋链系统的态矢量进行分类,再使用监督学习算法中的卷积神经网络... 通过序参量来研究量子相变是比较传统的做法,而从机器学习的角度研究相变是一块全新的领域.本文提出了先采用无监督学习算法中的高斯混合模型对J_(1)-J_(2)反铁磁海森伯自旋链系统的态矢量进行分类,再使用监督学习算法中的卷积神经网络鉴别无监督学习算法给出的分类点是否是相变点的方法,并使用交叉验证的方法对学习效果进行验证.结果表明,上述机器学习方法可以从基态精确找到J_(1)-J_(2)反铁磁海森伯自旋链系统的一阶相变点、无法找到无穷阶相变点,从第一激发态不仅能找到一阶相变点,还能找到无穷阶相变点. 展开更多
关键词 海森伯j_(1)-j_(2)模型 机器学习 神经网络 相变
下载PDF
Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J_(1)–J_(2)Heisenberg model
2
作者 He-Yu Lin Rong-Qiang He Zhong-Yi Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第8期207-211,共5页
Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the ... Restricted Boltzmann machine(RBM)has been proposed as a powerful variational ansatz to represent the ground state of a given quantum many-body system.On the other hand,as a shallow neural network,it is found that the RBM is still hardly able to capture the characteristics of systems with large sizes or complicated interactions.In order to find a way out of the dilemma,here,we propose to adopt the Green's function Monte Carlo(GFMC)method for which the RBM is used as a guiding wave function.To demonstrate the implementation and effectiveness of the proposal,we have applied the proposal to study the frustrated J_(1)-J_(2)Heisenberg model on a square lattice,which is considered as a typical model with sign problem for quantum Monte Carlo simulations.The calculation results demonstrate that the GFMC method can significantly further reduce the relative error of the ground-state energy on the basis of the RBM variational results.This encourages to combine the GFMC method with other neural networks like convolutional neural networks for dealing with more models with sign problem in the future. 展开更多
关键词 restricted Boltzmann machine Green's function Monte Carlo frustrated j_(1)–j_(2)heisenberg model
下载PDF
A hybrid method integrating Green's function Monte Carlo and projected entangled pair states
3
作者 He-Yu Lin Rong-Qiang He +1 位作者 Yibin Guo Zhong-Yi Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期75-81,共7页
This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function ... This paper introduces a hybrid approach combining Green’s function Monte Carlo(GFMC)method with projected entangled pair state(PEPS)ansatz.This hybrid method regards PEPS as a trial state and a guiding wave function in GFMC.By leveraging PEPS’s proficiency in capturing quantum state entanglement and GFMC’s efficient parallel architecture,the hybrid method is well-suited for the accurate and efficient treatment of frustrated quantum spin systems.As a benchmark,we applied this approach to study the frustrated J_(1)–J_(2) Heisenberg model on a square lattice with periodic boundary conditions(PBCs).Compared with other numerical methods,our approach integrating PEPS and GFMC shows competitive accuracy in the performance of ground-state energy.This paper provides systematic and comprehensive discussion of the approach of our previous work[Phys.Rev.B 109235133(2024)]. 展开更多
关键词 projected entangled pair states Green’s function Monte Carlo frustrated j_(1)-j_(2)heisenberg model
下载PDF
An optimized cluster density matrix embedding theory
4
作者 Hao Geng Quan-lin Jie 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期117-122,共6页
We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study ... We propose an optimized cluster density matrix embedding theory(CDMET).It reduces the computational cost of CDMET with simpler bath states.And the result is as accurate as the original one.As a demonstration,we study the distant correlations of the Heisenberg J_(1)-J_(2)model on the square lattice.We find that the intermediate phase(0.43≤sssim J_(2)≤sssim 0.62)is divided into two parts.One part is a near-critical region(0.43≤J_(2)≤0.50).The other part is the plaquette valence bond solid(PVB)state(0.51≤J_(2)≤0.62).The spin correlations decay exponentially as a function of distance in the PVB. 展开更多
关键词 cluster density matrix embedding theory distant correlation heisenberg j_(1)-j_(2)model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部