Jacalin-related lectins (JRLs) are widely distributed carbohydrate-binding proteins in the plant kingdom, which play key roles in development and pathogen defense. In this study, we profiled evolutionary trajectory ...Jacalin-related lectins (JRLs) are widely distributed carbohydrate-binding proteins in the plant kingdom, which play key roles in development and pathogen defense. In this study, we profiled evolutionary trajectory of JRLs family in 30 plant species and identified domain diversification and recombination leading to different responsive patterns of JRLs in rice during defense against rice blast. All of 30 plant species analyzed in our study have two types of JRLs by containing either a single jacalin or repeated jacalin domains, while chimeric jacalins exist in more than half of the species, especially in the Poaceae family. Moreover, Poaceae species have evolved two types of unique chimeric JRLs by fusing the jacalin domain(s) with dirigent or NB_ARC domain, some of which positively regulate plant immunity. Seven Poaceae-specific JRLs are found in the rice genome. We further found expression of rice JRLs, including four Poaceae-specific JRLs, are induced by Magnaporthe oryzae infections at either early or late infection stages. Overall, the results present the evolutionary trajectory of JRLs in plant and highlight essential roles of Poaceae specific JRLs against pathogen attacks in rice.展开更多
Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized...Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad- spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses re- vealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense.展开更多
基金funded by the National Key Research and Development Program of China(2016YFD0100600)the National Natural Science Foundation of China(U1405212)
文摘Jacalin-related lectins (JRLs) are widely distributed carbohydrate-binding proteins in the plant kingdom, which play key roles in development and pathogen defense. In this study, we profiled evolutionary trajectory of JRLs family in 30 plant species and identified domain diversification and recombination leading to different responsive patterns of JRLs in rice during defense against rice blast. All of 30 plant species analyzed in our study have two types of JRLs by containing either a single jacalin or repeated jacalin domains, while chimeric jacalins exist in more than half of the species, especially in the Poaceae family. Moreover, Poaceae species have evolved two types of unique chimeric JRLs by fusing the jacalin domain(s) with dirigent or NB_ARC domain, some of which positively regulate plant immunity. Seven Poaceae-specific JRLs are found in the rice genome. We further found expression of rice JRLs, including four Poaceae-specific JRLs, are induced by Magnaporthe oryzae infections at either early or late infection stages. Overall, the results present the evolutionary trajectory of JRLs in plant and highlight essential roles of Poaceae specific JRLs against pathogen attacks in rice.
文摘Modular proteins are an evolutionary answer to optimize performance of proteins that physically interact with each other for functionality. Using a combination of genetic and biochemical experiments, we charac-terized the rice protein OsJAC1, which consists of a jacalin-related lectin (JRL) domain predicted to bind mannose-containing oligosaccharides, and a dirigent domain which might function in stereoselective coupling of monolignols. Transgenic overexpression of OsJAC1 in rice resulted in quantitative broad- spectrum resistance against different pathogens including bacteria, oomycetes, and fungi. Overexpression of this gene or its wheat ortholog TAJA1 in barley enhanced resistance against the powdery mildew fungus. Both protein domains of OsJAC1 are required to establish resistance as indicated by single or combined transient expression of individual domains. Expression of artificially separated and fluorescence-tagged protein domains showed that the JRL domain is sufficient for targeting the powdery mildew penetration site. Nevertheless, co-localization of the lectin and the dirigent domain occurred. Phylogenetic analyses re- vealed orthologs of OsJAC1 exclusively within the Poaceae plant family. Dicots, by contrast, only contain proteins with either JRL or dirigent domain(s). Altogether, our results identify OsJAC1 as a representative of a novel type of resistance protein derived from a plant lineage-specific gene fusion event for better function in local pathogen defense.