设K.是Jackson算子J_n的逼近度。本文应用[2]中K_2的积分表示,证明{K_(2N-1)}渐减到K=3/πintegral from n=0 to ∞[4/πt](sint/t)~4dt并且对所有的u,有K_s≥K_2=2(1-2/π3^(1/2),以及inf sup||J_n(f)-f||_e/ω(f,π/n+1)=K_2=2(1-2/π...设K.是Jackson算子J_n的逼近度。本文应用[2]中K_2的积分表示,证明{K_(2N-1)}渐减到K=3/πintegral from n=0 to ∞[4/πt](sint/t)~4dt并且对所有的u,有K_s≥K_2=2(1-2/π3^(1/2),以及inf sup||J_n(f)-f||_e/ω(f,π/n+1)=K_2=2(1-2/π3^(1/2))展开更多
This paper introduces a kind of bivariate integral trigonometrical interpolating polynomials,proves its boundedness in orlicz spaces and gives the quantwative estimate degree of approximation in orlicz norm,As applica...This paper introduces a kind of bivariate integral trigonometrical interpolating polynomials,proves its boundedness in orlicz spaces and gives the quantwative estimate degree of approximation in orlicz norm,As application,the degree of approximation by a kind of bivariate integral Hermite-Fejer interpolating operators is given in the weight orlicz spaces.展开更多
文摘设K.是Jackson算子J_n的逼近度。本文应用[2]中K_2的积分表示,证明{K_(2N-1)}渐减到K=3/πintegral from n=0 to ∞[4/πt](sint/t)~4dt并且对所有的u,有K_s≥K_2=2(1-2/π3^(1/2),以及inf sup||J_n(f)-f||_e/ω(f,π/n+1)=K_2=2(1-2/π3^(1/2))
文摘This paper introduces a kind of bivariate integral trigonometrical interpolating polynomials,proves its boundedness in orlicz spaces and gives the quantwative estimate degree of approximation in orlicz norm,As application,the degree of approximation by a kind of bivariate integral Hermite-Fejer interpolating operators is given in the weight orlicz spaces.