期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Extended Jacobi Elliptic Function Rational Expansion Method and Its Application to (2+1)-Dimensional Stochastic Dispersive Long Wave System
1
作者 SONG Li-Na ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第6期969-974,共6页
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evo... In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions. 展开更多
关键词 stochastic evolution equations (2+ 1)-dimensional stochastic dispersive long wave system rational formal stochastic jacobi elliptic function solutions
下载PDF
New Extended Jacobi Elliptic Function Rational Expansion Method and Its Application
2
作者 ZHENG Ying ZHANG Yuan-Yuan ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1X期5-9,共5页
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ... In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations. 展开更多
关键词 extended jacobi elliptic function rational expansion method rational formal jacobi elliptic function solution (2+1)-dimensional dispersive long wave equation
下载PDF
On a Generalized Extended F-Expansion Method 被引量:1
3
作者 REN Yu-Jie LIU Shu-Tian ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第1期15-28,共14页
Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generali... Making use of a new generalized ansatz, we present a new generalized extended F-expansion method for constructing the exact solutions of nonlinear partial differential equations in a unified way. Applying the generalized method with the aid of Maple, we consider the (2+1)-dimentional breaking soliton equation. As a result, we successfully obtain some new and more general solutions including Jacobi elliptic function solutions, soliton-like solutions, trigonometric function solutions, and so on. As an illustrative sampler the properties of some soliton solutions for the breaking soliton equation are shown by some figures. Our method can also be applied to other partial differential equations. 展开更多
关键词 (2+1)-dimentional breaking soliton equation generalized extended F-expansion method jacobi elliptic function solution generalized ansatz soliton-like solution
下载PDF
A Generalized Extended F-Expansion Method and Its Application in (2+1)-Dimensional Dispersive Long Wave Equation 被引量:1
4
作者 HUANG Wen-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第4X期580-586,共7页
A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensio... A new generalized extended F-expansion method is presented for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. As an application of this method, we study the (2+1)-dimensional dispersive long wave equation. With the aid of computerized symbolic computation, a number of doubly periodic wave solutions expressed by various Jacobi elliptic functions are obtained. In the limit cases, the solitary wave solutions are derived as well. 展开更多
关键词 (2+1)-dimensional dispersive long wave equation extended F-expansion jacobi elliptic function periodic wave solution
下载PDF
Multi-symplectic method for the generalized(2+1)-dimensionalKdV-mKdV equation
5
作者 Wei-Peng Hu Zi-Chen Deng +1 位作者 Yu-Yue Qin Wen-Rong Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期793-800,共8页
In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tio... In the present paper, a general solution involv- ing three arbitrary functions for the generalized (2+1)- dimensional KdV-mKdV equation, which is derived from the generalized (1+1)-dimensional KdV-mKdV equa- tion, is first introduced by means of the Wiess, Tabor, Carnevale (WTC) truncation method. And then multi- symplectic formulations with several conservation laws taken into account are presented for the generalized (2+1)- dimensional KdV-mKdV equation based on the multi- symplectic theory of Bridges. Subsequently, in order to simulate the periodic wave solutions in terms of rational functions of the Jacobi elliptic functions derived from thegeneral solution, a semi-implicit multi-symplectic scheme is constructed that is equivalent 1:o the Preissmann scheme. From the results of the numerical experiments, we can con- clude that the multi-symplectic schemes can accurately sim- ulate the periodic wave solutions of the generalized (2+1)- dimensional KdV-mKdV equation while preserve approxi- mately the conservation laws. 展开更多
关键词 Generalized (2+ 1)-dimensional KdV-mKdVequation Multi-symplectic Periodic wave solution Con-servation law ~ jacobi elliptic function
下载PDF
Soliton and other solutions to the (1+2)-dimensional chiral nonlinear Schrodinger equation 被引量:1
6
作者 K Hosseini M Mirzazadeh 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第12期99-104,共6页
The(1+2)-dimensional chiral nonlinear Schr?dinger equation(2D-CNLSE)as a nonlinear evolution equation is considered and studied in a detailed manner.To this end,a complex transform is firstly adopted to arrive at the ... The(1+2)-dimensional chiral nonlinear Schr?dinger equation(2D-CNLSE)as a nonlinear evolution equation is considered and studied in a detailed manner.To this end,a complex transform is firstly adopted to arrive at the real and imaginary parts of the model,and then,the modified Jacobi elliptic expansion method is formally utilized to derive soliton and other solutions of the 2D-CNLSE.The exact solutions presented in this paper can be classified as topological and nontopological solitons as well as Jacobi elliptic function solutions. 展开更多
关键词 modified jacobi elliptic expansion method (1+2)-dimensional chiral nonlinear Schrodinger equation topological and nontopological solitons jacobi elliptic function solutions
原文传递
New Exact Solutions of Time Fractional Gardner Equation by Using New Version of F-Expansion Method 被引量:10
7
作者 Yusuf Pandir Hasan Huseyin Duzgun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第1期9-14,共6页
In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are sit... In this article, we consider analytical solutions of the time fractional derivative Gardner equation by using the new version of F-expansion method. With this proposed method multiple Jacobi elliptic functions are situated in the solution function. As a result, various exact analytical solutions consisting of single and combined Jacobi elliptic functions solutions are obtained. 展开更多
关键词 new version of F-expansion method nonlinear differential equations with fractional derivatives single and combined jacobi elliptic functions solutions
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部