期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
J_(x^m) f类解析函数正规型 被引量:3
1
作者 周伟峰 施恩伟 《云南师范大学学报(自然科学版)》 2007年第3期8-9,27,共3页
文章给出Jxm f函数类的正规型的一个简单的初等的证明方法。
关键词 拟齐次函数 正规型 雅可比理想
下载PDF
一类特殊半拟齐次函数的正规型
2
作者 周伟峰 向华 施恩伟 《苏州科技学院学报(自然科学版)》 CAS 2007年第1期46-48,共3页
利用文献[1]中给出的半拟齐次函数的性质证明了一类特殊半拟齐次函数的正规型,使得半拟齐次函数的分类更加简化。
关键词 半拟齐次函数 正规型 雅可比理想
下载PDF
关于半拟齐次函数正规型的证明
3
作者 刘瑞娟 施恩伟 《四川理工学院学报(自然科学版)》 CAS 2008年第4期6-8,共3页
运用拟齐次函数的性质,给出了一类解析函数正规型的一个简单的初等的证明方法。
关键词 临界点 拟齐次函数 半拟齐次函数 正规型 雅可比理想
下载PDF
Finite Determinacy of High Codimension Smooth Function Germs
4
作者 GAN Wen-liang PEI Dong-he +1 位作者 LI Qiang GAO Rui-mei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第1期92-99,共8页
Mather gave the necessary and suffcient conditions for the ?nite determinacy smooth function germs with no more than codimension 4. The theorem is very effective on determining low codimension smooth function germs. I... Mather gave the necessary and suffcient conditions for the ?nite determinacy smooth function germs with no more than codimension 4. The theorem is very effective on determining low codimension smooth function germs. In this paper, the concept of right equivalent for smooth function germs ring generated by two ideals ?nitely is de?ned. The containment relationships of function germs still satisfy ?nite k-determinacy under suffciently small disturbance which are discussed in orbit tangent spaces. Furthermore, the methods in judging the right equivalency of Arnold function family with codimension 5 are presented. 展开更多
关键词 function GERM jacobian ideal DIFFEOMORPHISM right EQUIVALENCE
下载PDF
More Compactification for Differential Systems
5
作者 Harry Gingold Daniel Solomon 《Advances in Pure Mathematics》 2013年第1期190-203,共14页
This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity ... This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems. 展开更多
关键词 Nonlinear Polynomial COMPACTIFICATION Ultra Extended Euclidean Space CRITICAL POINT Equilibrium POINT CRITICAL POINT at INFINITY CRITICAL Direction at INFINITY BASIN of Divergence BASIN of Convergence ideal Solutions Asymptotic Stability Global Globally Asymptotically Stable jacobian Painleve Analysis Competing Species Model Lorenz Equations Periodic Surface Differential Geometry Attractor REPELLER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部