In this paper,we give definition and moduler representation of Kothe root for additive cate gories.Using these results,get inner representation of J-root and fully homomorph class of Jscmisimple additive categories.
In this paper, we determine the Jacobson radicals and Brown-McCoy radicals of group rings of certain non-abelian groups and generalize some known results.
F.A.Szasz has put forward the open problem 55 in [1]: Let K be the class of all subdirectly irreducible rings, whose Jacobson radical is (0). Examine the upper radical determined by the class K. In this paper, the pro...F.A.Szasz has put forward the open problem 55 in [1]: Let K be the class of all subdirectly irreducible rings, whose Jacobson radical is (0). Examine the upper radical determined by the class K. In this paper, the problem has been examined. (1) It has been proved that the upper radical R determined by the class K is a special radical,which lies between Jacobson radical and Brown-McCoy radical. (2) It has been given some necessary and sufficient condition of ring A to be an R-radical ring.展开更多
文摘In this paper,we give definition and moduler representation of Kothe root for additive cate gories.Using these results,get inner representation of J-root and fully homomorph class of Jscmisimple additive categories.
文摘In this paper, we determine the Jacobson radicals and Brown-McCoy radicals of group rings of certain non-abelian groups and generalize some known results.
文摘F.A.Szasz has put forward the open problem 55 in [1]: Let K be the class of all subdirectly irreducible rings, whose Jacobson radical is (0). Examine the upper radical determined by the class K. In this paper, the problem has been examined. (1) It has been proved that the upper radical R determined by the class K is a special radical,which lies between Jacobson radical and Brown-McCoy radical. (2) It has been given some necessary and sufficient condition of ring A to be an R-radical ring.