Jamuna River is one of the principal rivers of Bangladesh, changing continuously due to erosion and accretion over the past decades. This analysis evaluates the East Bank and the West Bank erosion and accretion betwee...Jamuna River is one of the principal rivers of Bangladesh, changing continuously due to erosion and accretion over the past decades. This analysis evaluates the East Bank and the West Bank erosion and accretion between 1996 and 2015 for Jamuna River. An unsupervised classification algorithm and post-classification change employing skills in Geographic Information System are performed to evaluate spatial and temporal dynamics of erosion and accretion for different points of Jamuna River using Bangladesh. Landsat image (1995, 2005, 2015). The correctness of the Landsat-produced map ranges from 82% to 84%. It has been evidently observed that changes in the proportion of erosion and accretion differ in different points of Jamuna River. The highest eroded area is 3.82 square kilometers (km2) during the period of 1995 to 2005 and the highest accreted area is 6.15 square kilometers (km2) during the period of 1995 to 2015. The erosion and accretion values fluctuated from place to place. The changing trend of Riverbank is creating many socio-economic problems in the proximate areas.展开更多
This study is conducted to evaluate the ongoing geoenvironmental impacts of Brahmaputra-Jamuna (BJ) River around the Jamuna Bridge (JB) site which was modified prior to the construction of Jamuna Bridge in 1996. Remot...This study is conducted to evaluate the ongoing geoenvironmental impacts of Brahmaputra-Jamuna (BJ) River around the Jamuna Bridge (JB) site which was modified prior to the construction of Jamuna Bridge in 1996. Remote sensing and GIS techniques are adopted to evaluate the temporal and spatial geohazards. This study shows that the intensity of channel shifting has been increased due to regulation of river width at Sira-jganj–Bhuiyapur section from 11 km to 4.8 km. Planform analysis shows that the major channel has been stressed to migrate (315 m/year) eastwards. The phenomena of channel changes are predicted to be the con-sequences of interaction of water flow, sedimentation and channel corridor. The erosion and deposition have complicated variations over time and space due to the abrupt changes of flow and sedimentation around the regulated section. Due to width reduction, the bridge site in the braided system acts as sluice gate which can not accommodate the entire flow to release downstream properly. The helical flow developed with the inter-action of guide bund creates local scours and helps to shift the river bank eastward.展开更多
文摘Jamuna River is one of the principal rivers of Bangladesh, changing continuously due to erosion and accretion over the past decades. This analysis evaluates the East Bank and the West Bank erosion and accretion between 1996 and 2015 for Jamuna River. An unsupervised classification algorithm and post-classification change employing skills in Geographic Information System are performed to evaluate spatial and temporal dynamics of erosion and accretion for different points of Jamuna River using Bangladesh. Landsat image (1995, 2005, 2015). The correctness of the Landsat-produced map ranges from 82% to 84%. It has been evidently observed that changes in the proportion of erosion and accretion differ in different points of Jamuna River. The highest eroded area is 3.82 square kilometers (km2) during the period of 1995 to 2005 and the highest accreted area is 6.15 square kilometers (km2) during the period of 1995 to 2015. The erosion and accretion values fluctuated from place to place. The changing trend of Riverbank is creating many socio-economic problems in the proximate areas.
文摘This study is conducted to evaluate the ongoing geoenvironmental impacts of Brahmaputra-Jamuna (BJ) River around the Jamuna Bridge (JB) site which was modified prior to the construction of Jamuna Bridge in 1996. Remote sensing and GIS techniques are adopted to evaluate the temporal and spatial geohazards. This study shows that the intensity of channel shifting has been increased due to regulation of river width at Sira-jganj–Bhuiyapur section from 11 km to 4.8 km. Planform analysis shows that the major channel has been stressed to migrate (315 m/year) eastwards. The phenomena of channel changes are predicted to be the con-sequences of interaction of water flow, sedimentation and channel corridor. The erosion and deposition have complicated variations over time and space due to the abrupt changes of flow and sedimentation around the regulated section. Due to width reduction, the bridge site in the braided system acts as sluice gate which can not accommodate the entire flow to release downstream properly. The helical flow developed with the inter-action of guide bund creates local scours and helps to shift the river bank eastward.