The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be...The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be intergraded on a chip.Here,taking MoSSe as an example,we report the first detailed experimental study of the SHG of Janus TMD monolayer,in which the transition metal layer is sandwiched by the two distinct chalcogen layers.It is shown that the SHG effectively arises from an in-plane second-harmonic polarization under paraxial focusing and detection.Based on this,the orientation-resolved SHG spectroscopy is realized to readily determine the zigzag and armchair axes of the Janus crystal with an accuracy better than±0.6°.Moreover,the SHG intensity is wavelength-dependent and can be greatly enhanced(~60 times)when the two-photon transition is resonant with the C-exciton state.Our findings uncover the SHG properties of Janus MoSSe monolayer,therefore lay the basis for its integrated frequency-doubling applications.展开更多
Janus transition metal dichalcogenides(TMDs)structures,as a new type of two-dimensional layered materials,have drawn increasing research efforts mostly by the Raman characterization technique since their successful sy...Janus transition metal dichalcogenides(TMDs)structures,as a new type of two-dimensional layered materials,have drawn increasing research efforts mostly by the Raman characterization technique since their successful synthesis.First-and second-order resonant Raman spectra(RRS)have been reported by experiments.But,unlike much interest paid to the first-order RRS,there has been so far no much discussion dedicated to the second-order double resonant Raman(DRR)bands and band assignments of Janus TMDs,which nevertheless is indispensable but hampered by the difficulty of calculations.In this work,we calculate the DRR spectra of Janus Mo SSe monolayer within the first-principles framework and succeed in achieving accurate assignments of the DRR bands.The assignments are in agreement with our group theoretical analysis.Moreover,taking advantage of its strain-sensitive feature,we calculate the DRR spectra under biaxial strain,and further verify the rationality of our assignments by analyzing strain-induced shift of the DRR bands.Our present study supplies an efficient strategy for quantitative understanding on the electron-phonon coupling in the Janus structures.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61888102,51771224,and 62175253)the National Key R&D Program of China(Grant Nos.2018YFA0305803 and 2019YFA0308501)+4 种基金the Chinese Academy of Sciences(Grant Nos.XDB33030100 and XDB30010000)J.S.and X.L.thank the supports from the National Natural Science Foundation of China(Grant Nos.20173025,22073022,and 11874130)the National Key R&D Program of China(Grant No.2017YFA0205004)the Chinese Academy of Sciences(Grant Nos.XDB3600000 and Y950291)the DNL Cooperation Fund(Grant No.DNL202016).
文摘The transition metal dichalcogenides(TMD)monolayers have shown strong second-harmonic generation(SHG)ow-ing to their lack of inversion symmetry.These ultrathin layers then serve as the frequency converters that can be intergraded on a chip.Here,taking MoSSe as an example,we report the first detailed experimental study of the SHG of Janus TMD monolayer,in which the transition metal layer is sandwiched by the two distinct chalcogen layers.It is shown that the SHG effectively arises from an in-plane second-harmonic polarization under paraxial focusing and detection.Based on this,the orientation-resolved SHG spectroscopy is realized to readily determine the zigzag and armchair axes of the Janus crystal with an accuracy better than±0.6°.Moreover,the SHG intensity is wavelength-dependent and can be greatly enhanced(~60 times)when the two-photon transition is resonant with the C-exciton state.Our findings uncover the SHG properties of Janus MoSSe monolayer,therefore lay the basis for its integrated frequency-doubling applications.
基金financially supported by the National Natural Science Foundation of China(No.52031014)the National Key R&D Program of China(No.2017YFA0206301)。
文摘Janus transition metal dichalcogenides(TMDs)structures,as a new type of two-dimensional layered materials,have drawn increasing research efforts mostly by the Raman characterization technique since their successful synthesis.First-and second-order resonant Raman spectra(RRS)have been reported by experiments.But,unlike much interest paid to the first-order RRS,there has been so far no much discussion dedicated to the second-order double resonant Raman(DRR)bands and band assignments of Janus TMDs,which nevertheless is indispensable but hampered by the difficulty of calculations.In this work,we calculate the DRR spectra of Janus Mo SSe monolayer within the first-principles framework and succeed in achieving accurate assignments of the DRR bands.The assignments are in agreement with our group theoretical analysis.Moreover,taking advantage of its strain-sensitive feature,we calculate the DRR spectra under biaxial strain,and further verify the rationality of our assignments by analyzing strain-induced shift of the DRR bands.Our present study supplies an efficient strategy for quantitative understanding on the electron-phonon coupling in the Janus structures.