To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
The present study is based on the sedimentological data from a piston core KCES1 off the southern Ulleung Basin margin,the East Sea(Sea of Japan).The data include sediment color(L^*),X-ray radiographs,grain size ...The present study is based on the sedimentological data from a piston core KCES1 off the southern Ulleung Basin margin,the East Sea(Sea of Japan).The data include sediment color(L^*),X-ray radiographs,grain size distribution and AMS^14C date.Four kinds of sediments(homogeneous,laminated,crudely laminated and hybrid sediments) are identified according to the characters of the sedimentary structures that were considered to reflect changes in bottom-water oxygenation.Alternations of dark laminated/crudely laminated sediments and light homogeneous sediments represent millennial-scale variations that are possibly associated with the high-resolution changes in the East Asian monsoon(EAM).The relative contributions of the East China Sea Coastal Water(ECSCW) and the Tsushima Warm Current(TWC) were likely the main reasons for the repetition of the anoxic and oxic depositional conditions in the East Sea since the last 48 ka BP.During the interstadial,the strengthen summer EAM was attributed to the expansion of the ECSCW because of more humid climate in central Asia,and then more strongly low-salinity,nutrient-enriched water was introduced into the East Sea.The ventilation of deep water was restricted and therefore the dark laminated layer deposited under the anoxic bottom water condition.During the lowest stand of sea level in the last glacial maximum(LGM),the isolated East Sea dominated by stratified water masses and the euxinic depositional environment formed.The homogenous sediments have been predominating since 17.5 ka BP indicating that the TWC has intruded into the East Sea gradually with the stepwise rise of sea level and the bottom water oxygen level was high.During the late Younger Dryas(YD) period,the last dark laminated layer deposited because the ventilation of bottom water was restricted by stronger summer EAM.The TWC strengthened and the bottom water became oxic again from 10.5 ka BP.展开更多
Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. ...Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. In order to understand the causes of variability in fish stocks (natural and/or anthropogenic) and calibrate the error between catches and standing stocks, it is essential to develop long-term time series of fish stocks from the time when human impacts are minimal or negligible. Well preserved fish scales from sediment record are regarded as useful indicators revealing the history of fish population dynamics over the last centuries. Anchovy scales was first analyzed over the Yellow Sea and East China Sea and the largest abundance was found in the central South Yellow Sea where is regarded as the largest overwintering ground for Japanese anchovy (Engraulis japonicas). Thus in the central South Yellow Sea, two cores covering the last 150 years were collected for estimating fish scale flux. The scale deposition rate (SDR) records show that the decadal scale SDRs were obviously coherent between cores with independent chronologies. Thecalibration of downcore SDRs to the standing stocks of anchovy further validated that SDR is a reliable proxy to recon-struct the long-term anchovy population dynamic in the central South Yellow Sea where anoxic conditions prevail in the sediment. When assembled with other productivity proxies, it would be expected that SDR could be associated with changes in oceanic productivity and may make a contribution to determine the forcing factors and elucidate the mechanism of the process in future.展开更多
The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size...The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.展开更多
A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the bac...A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.展开更多
Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the...Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to E1 Nifio and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An 'enigma' is revealed that the correlation between the thermosterie sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977-1998, whereas there appears a relatively weak positive correlation during the period 1945-1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES.展开更多
Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS...Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS) in the East China Sea Shelf Basin, characterized by its extensive area, thick sedimentary strata, and optimal depth, presents distinct geological advantages for carbon dioxide(CO_(2)) storage. Focusing on the lower section of the Shimentan Formation in the Upper Cretaceous of the QTS, this study integrates seismic interpretation and drilling data with core and thin-section analysis. We reveal the vertical variation characteristics of the strata by providing a detailed stratigraphic description. We use petrophysical data to reveal the development characteristics of high-quality carbon-storage layers and favorable reservoircaprock combinations, thereby evaluating the geological conditions for CO_(2) storage in various stratigraphic sections. We identify Layer B of the lower Shimentan Formation as the most advantageous stratum for marine CO_(2) storage. Furthermore, we analyze the carbon emission trends in the adjacent Yangtze River Delta region. Considering the characteristics of the source and sink areas, we suggest a strong correlation between the carbon emission sources of the Yangtze River Delta and the CO_(2) storage area of the QTS, making the latter a priority area for conducting experiments on marine CO_(2) storage.展开更多
To understand the temporal and spatial variations in nutrient dynamics,as well as the potential cross-shelf transport of nutrients between the East China Sea(ECS)shelf and the northwestern Pacific Ocean,six field obse...To understand the temporal and spatial variations in nutrient dynamics,as well as the potential cross-shelf transport of nutrients between the East China Sea(ECS)shelf and the northwestern Pacific Ocean,six field observations covering the ECS were conducted in spring,summer,and autumn in 2011 and 2013.Nutrient dynamics in the ECS and nutrient exchange between shelf water and the open ocean were examined.High concentrations of dissolved inorganic nutrients were detected in the nearshore surface layer and offshore bottom layer in different seasons,and the concentrations of dissolved inorganic nutrients in surface seawater were lower in summer and autumn than in spring.The concentrations of dissolved organic nutrients in Kuroshio surface water were slightly lower in summer than in spring,but the concentrations in Kuroshio subsurface water were slightly higher in summer than in spring.There were abundant nutrient reservoirs in the euphotic zone of the ECS,which explained the high primary productivity.The evaluation of cross-shelf transport indicated that nutrients from shelf water were transported out across the 200 m isobath through the surface layer with the density(σ)less than 23.0 kg/m^(3) in spring.The flux of dissolved inorganic nitrogen transported from the ECS shelf to the Northwest Pacific Ocean in spring was equivalent to 21%of the atmospheric nitrogen deposition in the Northwest Pacific Ocean.In summer,the onshore flux in the surface and bottom layers accounted for 80%of the total flux,and the transportation of nutrients along the surface layer to the continental shelf contributed to the nutrient storage and primary productivity of the euphotic zone in the ECS shelf in summer.展开更多
Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-20...Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).展开更多
The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang F...The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.展开更多
We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(S...We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.展开更多
In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key r...In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes.Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east–west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific–Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.展开更多
The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the...The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.展开更多
A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been perfor...A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been performed focusing on the geographic extent of a topographic feature in the East (Japan) Sea. Numerical models can be the proper tools to study the combined effects of realistic topography. Subsequently, using the FEM based two-dimensional model we have simulated the smoothed and flattened topographic effects by removal of Yamato Rise and seamounts for the cases of tthe 1983 Central region earthquake tsunami and the 1993 southwestern Hokkaido earthquake tsunami. The results have shown that there will be higher tsunamis along the eastern coasts of Korea in general except some areas, like Sokcho with removal of topographic highs, thus providing complicated bottom topography of the East (Japan) Sea as effective tsunami energy scattering.展开更多
The Umitaka Spur and Joetsu Knoll region,eastern margin of the Japan Sea,has been investigated as the gas hydrate field associated with the occurrence of methane-related/induced activities.Massive to vein-like gas hyd...The Umitaka Spur and Joetsu Knoll region,eastern margin of the Japan Sea,has been investigated as the gas hydrate field associated with the occurrence of methane-related/induced activities.Massive to vein-like gas hydrates are found on/near the seafloor where huge methane plumes,reaching 600-650 m height, have been observed on the echo sounding images around the summits.Columnar chaotic gas-charged sediment structures are observed beneath the gas hydrate occurrences on the seismic images。展开更多
Subinertial fluctuation of a strong northward deep current, which is referred to the Dokdo Abyssal Current (DAC) by Chang et al. (2009), is investigated from current records for about 16.5 and 8.0 months in the Ul...Subinertial fluctuation of a strong northward deep current, which is referred to the Dokdo Abyssal Current (DAC) by Chang et al. (2009), is investigated from current records for about 16.5 and 8.0 months in the Ulle- ung Interplain Gap of the East/lapan Sea. The current below 300 m is bottom-intensified and has nearly depth-independent flow. Near bottom, the spectral peaks of the current were found near 10, 20, and 60 d. The DAC variability near 10 d and 20 d is reasonably consistent with the linear theory of topographic Rossby waves (TRWs) in the following aspects: (1) The motion is columnar and bottom-intensified; (2) the theo- retical cutoff frequency is similar to the observation; (3) The observation-based angles of the wavenumber vector are in good agreement with the theoretical ones. The wavelengths of the TRWs with periods of near 10 d and 20 d near Dokdo are significantly shorter than those with similar timescales in the open oceans (100-250 km). It is primarily due to the weak stratification below 300 m in the East Sea. The deep cur- rent fluctuations with periods of near 10 d and 20 d were accompanied by warm events in the upper layer resulting from eddying processes and/or meandering of the Tsushima Warm Current.展开更多
In this study the structure and seasonal variations of deep mean circulation in the East/lapan Sea (E/S) were numerically simulated using a mid-resolution ocean general circulation model with two different parameter...In this study the structure and seasonal variations of deep mean circulation in the East/lapan Sea (E/S) were numerically simulated using a mid-resolution ocean general circulation model with two different parameterizations for the eddy-topography interaction (ETI). The strong deep mean circulations observed in the EIS are well reproduced when using the ETI parameterizations. The seasonal variability in the EIS deep layer is shown by using ETI parameterization based on the potential vorticity approach, while it is not shown in the statistical dynamical parameterization. The driving mechanism of the strong deep mean currents in the E/S are discussed by investigating the effects of model grids and parameterizations. The deep mean circulation is more closely related to the baroclinic process and potential vorticity than it is to the wind driven circulation.展开更多
In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED...In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED to simulate storm surge is validated by comparing model result with observed data. Sensitivity experiments are designed to study the influence of sea level rise on typhoon storm surge. Numerical experiment shows that influence of mean sea level rise on typhoon storm surge is non-uniform spatially and changes as typhoon process differs. Maybe fixed boundary method would weaken the influence of mean sea level rise on storm surge, and free boundary method is suggested for the succeeding study.展开更多
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observa...The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.展开更多
AMS14C dating and grain-size analysis for Core FJ04, located at mud area in the North of East China Sea provide us a high-resolution grain-size distribution curve varying with depth and time. This paper got environmen...AMS14C dating and grain-size analysis for Core FJ04, located at mud area in the North of East China Sea provide us a high-resolution grain-size distribution curve varying with depth and time. This paper got environmental sensitive grain-size group by using standard deviation method, and proved that the selected sensitive grain-size group is an important proxy which can be used to reconstruct intensity of East Asian Winter Monsoon (EAWM). Then we got reconstruction of EAWM evolvement since 3 ka B.P., which revealed two main phases: (1) 3 - 1.15ka B.P., relative weak EAWM with middle frequency fluctuation; (2) 1.15 - 0ka B.P., really strong EAWM with high frequency fluctuation. And 1.15 ka B.P. is a distinct turning point. During the whole period, 11 intense events of EAWM were recorded and correlated well with other climate records, but the response extent was different, which showed consistency of climate change and particularity of region response.展开更多
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金The National Natural Science Foundation of China under contract Nos 40431002,40606016 and 40710069004the China-Korea joint research programme and the Primary Science Foundation of First Institute of Oceanography under contract No. 2007T09
文摘The present study is based on the sedimentological data from a piston core KCES1 off the southern Ulleung Basin margin,the East Sea(Sea of Japan).The data include sediment color(L^*),X-ray radiographs,grain size distribution and AMS^14C date.Four kinds of sediments(homogeneous,laminated,crudely laminated and hybrid sediments) are identified according to the characters of the sedimentary structures that were considered to reflect changes in bottom-water oxygenation.Alternations of dark laminated/crudely laminated sediments and light homogeneous sediments represent millennial-scale variations that are possibly associated with the high-resolution changes in the East Asian monsoon(EAM).The relative contributions of the East China Sea Coastal Water(ECSCW) and the Tsushima Warm Current(TWC) were likely the main reasons for the repetition of the anoxic and oxic depositional conditions in the East Sea since the last 48 ka BP.During the interstadial,the strengthen summer EAM was attributed to the expansion of the ECSCW because of more humid climate in central Asia,and then more strongly low-salinity,nutrient-enriched water was introduced into the East Sea.The ventilation of deep water was restricted and therefore the dark laminated layer deposited under the anoxic bottom water condition.During the lowest stand of sea level in the last glacial maximum(LGM),the isolated East Sea dominated by stratified water masses and the euxinic depositional environment formed.The homogenous sediments have been predominating since 17.5 ka BP indicating that the TWC has intruded into the East Sea gradually with the stepwise rise of sea level and the bottom water oxygen level was high.During the late Younger Dryas(YD) period,the last dark laminated layer deposited because the ventilation of bottom water was restricted by stronger summer EAM.The TWC strengthened and the bottom water became oxic again from 10.5 ka BP.
基金The National Basic Research Program of China under contract Nos 2010CB428902 and 2006CB400007the National Natural Science Foundation of China under contract No.40876088
文摘Many studies have revealed that anchovy has exhibited large variability in population size on decadal tim-escales. However, such works concerning anchovy population are mainly based on short historical catch records. In order to understand the causes of variability in fish stocks (natural and/or anthropogenic) and calibrate the error between catches and standing stocks, it is essential to develop long-term time series of fish stocks from the time when human impacts are minimal or negligible. Well preserved fish scales from sediment record are regarded as useful indicators revealing the history of fish population dynamics over the last centuries. Anchovy scales was first analyzed over the Yellow Sea and East China Sea and the largest abundance was found in the central South Yellow Sea where is regarded as the largest overwintering ground for Japanese anchovy (Engraulis japonicas). Thus in the central South Yellow Sea, two cores covering the last 150 years were collected for estimating fish scale flux. The scale deposition rate (SDR) records show that the decadal scale SDRs were obviously coherent between cores with independent chronologies. Thecalibration of downcore SDRs to the standing stocks of anchovy further validated that SDR is a reliable proxy to recon-struct the long-term anchovy population dynamic in the central South Yellow Sea where anoxic conditions prevail in the sediment. When assembled with other productivity proxies, it would be expected that SDR could be associated with changes in oceanic productivity and may make a contribution to determine the forcing factors and elucidate the mechanism of the process in future.
基金the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Laoshan Laboratory(No.LSKJ202204005)+3 种基金the State Key Program of National Natural Science of China(No.42130411)the International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)the Aoshan Science and Technology Innovation Program(No.2016ASKJ02-4)the Taishan Scholars Project(to Song SUN)。
文摘The Yellow Sea(YS)and East China Sea(ECS)are highly dynamic marginal seas of the northwestern Pacific Ocean.To gain an in-depth understanding of zooplankton community structure,zooplankton abundance,biovolume,and size structure in summer 2017 in the YS and ECS were assessed using ZooScan imaging analysis.Zooplankton abundance and biovolume ranged 2.94–1187.14 inds./m^(3)and 3.13–3438.51 mm^(3)/m^(3),respectively.Based on the biovolume data of the categorized size classes of 26 identified taxonomic groups,the zooplankton community was classified into five groups,and each group was coupled with distinctive oceanographic features.Under the influence of the Yellow Sea Cold Water Mass,the Yellow Sea offshore group featured the lowest bottom temperature(10.84±3.42℃)and the most abundant Calanoids(mainly in the 2–3 mm size class).In the Yellow Sea inshore group,Hydrozoans showed the largest biovolume and dominated in the 3–4-mm and>5-mm size classes.The East China Sea offshore group,which was affected by the Kuroshio Branch Current,featured high temperature and salinity,and the lowest bottom dissolved oxygen(2.58±0.5 mg/L).The lowest values of zooplankton abundance and biovolume in the East China Sea offshore group might be attributed to the bottom dissolved oxygen contents.The East China Sea inshore group,which was mainly influenced by the Zhejiang-Fujian Coastal Current and Changjiang Diluted Water,was characterized by high chlorophyll a and the largest biovolume of carnivorous Siphonophores(280.82±303.37 mm^(3)/m^(3)).The Changjiang River estuary offshore group showed the most abundant Cyclopoids,which might be associated with the less turbid water mass in this region.Seawater temperature was considered the most important factor in shaping the size compositions of Calanoids in different groups.
基金supported by the Ministry of Science and Technology of China(National Basic Research Program of China(Grant No.2012CB955602))the National Key Program for Developing Basic Science(Grant No.2010CB428904)the Natural Science Foundation of China(Grant Nos.40830106,40921004,41176006)
文摘A robust anomalous anticyclonic circulation (AAC) was observed over Northeast Asia and the Japan Sea in boreal win-ter 1997/98 and over the Japan Sea in spring 1998. The formation mechanism is investigated. On the background of the vertically sheared winter monsoonal flow, anomalous rainfall in the tropical Indo-Western Pacific warm pool excited a wave train towards East Asia in the upper troposphere during boreal winter of 1997/98. The AAC over Northeast Asia and the Japan Sea is part of the wave train of equivalent barotropic structure. The AAC over the Japan Sea persisted from winter to spring and even intensified in spring 1998. The diagnostic calculations show that the vorticity and temperature fluxes by synoptic eddies are an important mechanism for the AAC over the Japan Sea in spring 1998.
基金supported by the National Basic Research Program of China under Grant No. 973-2007CB- 411807
文摘Sea level observed by altimeter during the 1993-2007 period and the thermosteric sea level from 1945 through 2005 obtained by using the global ocean temperature data sets recently published are used to investigate the interannual and decadal variability of the sea level in the Japan/East Sea (JES) and its response to E1 Nifio and Southern Oscillation (ENSO). Both the interannual variations of the sea level observed by altimeter and those of the thermosteric sea level obtained from reanalyzed data in the JES are closely related to ENSO. As a result, one important consequence is that the sea level trends are mainly caused by the thermal expansion in the JES. An 'enigma' is revealed that the correlation between the thermosterie sea level and ENSO during the PDO (Pacific Decadal Oscillation) warm phase (post mid-1970s) is inconsistent with that during the cold phase (pre mid-1970s) in the JES. The thermosteric sea level trends and the Southern Oscillation Index (SOI) suggest a strong negative correlation during the period 1977-1998, whereas there appears a relatively weak positive correlation during the period 1945-1976 in the JES. Based on the SODA (Simple Oceanographic Data Assimilation) datasets, possible mechanisms of the interannual and decadal variability of the sea level in the JES are discussed. Comprehensive analysis reveals that the negative anomalies of SOI correspond to the positive anomalies of the southeast wind stress, the net advective heat flux and the sea level in the JES during the PDO warm phase. During the PDO cold phase, the negative anomalies of SOI correspond to the positive anomalies of the southwest wind stress, the negative anomalies of the net advective heat flux and the sea level in the JES.
基金Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural ResourcesChengdu University of Technology:DGERA20231110。
文摘Excessive carbon emissions have resulted in the greenhouse effect, causing considerable global climate change. Marine carbon storage has emerged as a crucial approach to addressing climate change. The Qiantang Sag(QTS) in the East China Sea Shelf Basin, characterized by its extensive area, thick sedimentary strata, and optimal depth, presents distinct geological advantages for carbon dioxide(CO_(2)) storage. Focusing on the lower section of the Shimentan Formation in the Upper Cretaceous of the QTS, this study integrates seismic interpretation and drilling data with core and thin-section analysis. We reveal the vertical variation characteristics of the strata by providing a detailed stratigraphic description. We use petrophysical data to reveal the development characteristics of high-quality carbon-storage layers and favorable reservoircaprock combinations, thereby evaluating the geological conditions for CO_(2) storage in various stratigraphic sections. We identify Layer B of the lower Shimentan Formation as the most advantageous stratum for marine CO_(2) storage. Furthermore, we analyze the carbon emission trends in the adjacent Yangtze River Delta region. Considering the characteristics of the source and sink areas, we suggest a strong correlation between the carbon emission sources of the Yangtze River Delta and the CO_(2) storage area of the QTS, making the latter a priority area for conducting experiments on marine CO_(2) storage.
基金The National Science Foundation of China under contract No.42176040the National(Basic)Research and Development Program of China supported by Ministry of Science and Technology under contract Nos.2016YFA0600902 and 2011CB409802/03+1 种基金the Taishan Scholars Program of Shandong Provincethe Aoshan Talents Program supported by the National Laboratory for Marine Science and Technology(Qingdao).
文摘To understand the temporal and spatial variations in nutrient dynamics,as well as the potential cross-shelf transport of nutrients between the East China Sea(ECS)shelf and the northwestern Pacific Ocean,six field observations covering the ECS were conducted in spring,summer,and autumn in 2011 and 2013.Nutrient dynamics in the ECS and nutrient exchange between shelf water and the open ocean were examined.High concentrations of dissolved inorganic nutrients were detected in the nearshore surface layer and offshore bottom layer in different seasons,and the concentrations of dissolved inorganic nutrients in surface seawater were lower in summer and autumn than in spring.The concentrations of dissolved organic nutrients in Kuroshio surface water were slightly lower in summer than in spring,but the concentrations in Kuroshio subsurface water were slightly higher in summer than in spring.There were abundant nutrient reservoirs in the euphotic zone of the ECS,which explained the high primary productivity.The evaluation of cross-shelf transport indicated that nutrients from shelf water were transported out across the 200 m isobath through the surface layer with the density(σ)less than 23.0 kg/m^(3) in spring.The flux of dissolved inorganic nitrogen transported from the ECS shelf to the Northwest Pacific Ocean in spring was equivalent to 21%of the atmospheric nitrogen deposition in the Northwest Pacific Ocean.In summer,the onshore flux in the surface and bottom layers accounted for 80%of the total flux,and the transportation of nutrients along the surface layer to the continental shelf contributed to the nutrient storage and primary productivity of the euphotic zone in the ECS shelf in summer.
基金Supported by the Fundamental Research Funds for the Central Universities(Nos.202341017,202313024)。
文摘Chlorophyll-a(Chl-a)concentration is a primary indicator for marine environmental monitoring.The spatio-temporal variations of sea surface Chl-a concentration in the Yellow Sea(YS)and the East China Sea(ECS)in 2001-2020 were investigated by reconstructing the MODIS Level 3 products with the data interpolation empirical orthogonal function(DINEOF)method.The reconstructed results by interpolating the combined MODIS daily+8-day datasets were found better than those merely by interpolating daily or 8-day data.Chl-a concentration in the YS and the ECS reached its maximum in spring,with blooms occurring,decreased in summer and autumn,and increased in late autumn and early winter.By performing empirical orthogonal function(EOF)decomposition of the reconstructed data fields and correlation analysis with several potential environmental factors,we found that the sea surface temperature(SST)plays a significant role in the seasonal variation of Chl a,especially during spring and summer.The increase of SST in spring and the upper-layer nutrients mixed up during the last winter might favor the occurrence of spring blooms.The high sea surface temperature(SST)throughout the summer would strengthen the vertical stratification and prevent nutrients supply from deep water,resulting in low surface Chl-a concentrations.The sea surface Chl-a concentration in the YS was found decreased significantly from 2012 to 2020,which was possibly related to the Pacific Decadal Oscillation(PDO).
文摘The Xihu Depression is the largest hydrocarbon-bearing depression of the East China Sea Shelf Basin(also referred to as the ECSSB).However,the depositional systems and reservoir distribution of the Oligocene Huagang Formation in the Xihu Depression are still controversial.Under the guidance of sedimentology and stratigraphy,this study documented a marine-terrestrial transitional environment in the restricted bay setting of the Oligocene Huagang Formation through core description,well logging,and seismic data analysis.This study also revealed that the Oligocene Huagang Formation is dominated by tidal delta,estuary,and gravity flow deposits in the central anticline zone of the Xihu Depression.The new understanding of the sedimentary systems and the discovery of the transgressive gap in the eastern Diaoyu Islands uplift explain the origin of fine-grained sediments and the EW-trending sand bodies in the central depression and the sand bodies parallel to shoreline in the west slope belt,which cannot be explained by previous study results,such as southern transgression or fluvial deltas and even lacustrine deposition.Moreover,the tidal channels,tidal sand flats,and gravity flow sand bodies formed by the transgressive tides are high-quality reservoirs.The study will provide a basis for well placement and serve as guidance for the selection of favorable hydrocarbon exploration areas in the Xihu Depression.
基金supported by Innovation and Research Foundation of Ocean University of China(No.201261009)the National Natural Science Foundation of China(Nos.40930844 and 10735030)the National Basic Research Program of China(the 973 Program)under grant No.2005CB422 301
文摘We studied the impact of sea surface temperature anomaly(SSTA) in the Japan Sea and the sea area east of Japan on the winter rainfall and air temperature in Northeast(NE) China using the singular value decomposition(SVD) and empirical orthogonal function(EOF). The monthly-mean rainfall data observed at 160 stations in China, monthly-mean sea surface temperature(SST) of the Hadley Center for Climate Prediction and Research and monthly-mean air temperature from the NCEP reanalysis during 1960–2011 were used. Correlation analysis indicates that the SSTAs in the Japan Sea in September may last for three or four months and are an important index for forecasting the winter rainfall and air temperature in NE China. Positive SSTAs in the central Japan Sea and in the sea area east of Tokyo correspond to positive rainfall anomaly and negative air temperature anomaly in NE China. With the rise of SST in the Japan Sea, a weak cyclone appears over the Japan Sea. The northeasterly wind transports water vapor from the Okhotsk to NE China, resulting in more rainfall and lower air temperature. Negative SSTA years are accompanied by warmer air temperature and less snow in NE China. The 1000 h Pa geopotential height anomaly and wind anomaly fields are simulated by IAP-9L model, which supports the analysis results.
基金supported by the National Key R&D Program of China(Grant No.2016YFA0600703)the National Natural Science Foundation of China(Grant Nos.41605059,41505073 and 41375083)+1 种基金the Young Talent Support Program of the China Association for Science and Technology(Grant No.2016QNRC001)the Research Council of Norway SNOWGLACE(244166/E10)project
文摘In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes.Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east–west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific–Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.
文摘The East African short rainy season (October-November-December) is one of the major flood seasons in the East African region. The amount of rainfall during the short rainy season is closely related to the lives of the people and the socio-economic development of the area. By using precipitation data and sea surface temperature data, this study reveals the spatial and temporal variation patterns of extreme precipitation during the East African short rainy season. Key findings include significant rainfall variability, with Tanzania experiencing the highest amounts in December due to the southward shift of the Intertropical Convergence Zone (ITCZ), while other regions receive less than 100 mm. Extreme rainfall events (90th percentiles) are evenly distributed, averaging 2 to 10 days annually. Historical data shows maximum seasonal rainfall often peaks at 15 mm, with frequent occurrences of daily rainfall exceeding 10 mm during OND. Additionally, a positive correlation (0.48) between OND precipitation extremes and Indian Ocean Dipole (IOD) anomalies is statistically significant. These findings highlight the climatic variability and potential trends in extreme rainfall events in East Africa, providing valuable insights for regional climate adaptation strategies.
基金The work was financially supported by the Korean Ministry of Land,Transport and Maritime AffairsINTAS(Grant No.06-1000013-9236)
文摘A study of tsunami events in the East (Japan) Sea using continuous Galerkin finite element model, aiming at reproducing tsunami waves generated by underwater earthquakes in 1983 and 1993 respectively has been performed focusing on the geographic extent of a topographic feature in the East (Japan) Sea. Numerical models can be the proper tools to study the combined effects of realistic topography. Subsequently, using the FEM based two-dimensional model we have simulated the smoothed and flattened topographic effects by removal of Yamato Rise and seamounts for the cases of tthe 1983 Central region earthquake tsunami and the 1993 southwestern Hokkaido earthquake tsunami. The results have shown that there will be higher tsunamis along the eastern coasts of Korea in general except some areas, like Sokcho with removal of topographic highs, thus providing complicated bottom topography of the East (Japan) Sea as effective tsunami energy scattering.
文摘The Umitaka Spur and Joetsu Knoll region,eastern margin of the Japan Sea,has been investigated as the gas hydrate field associated with the occurrence of methane-related/induced activities.Massive to vein-like gas hydrates are found on/near the seafloor where huge methane plumes,reaching 600-650 m height, have been observed on the echo sounding images around the summits.Columnar chaotic gas-charged sediment structures are observed beneath the gas hydrate occurrences on the seismic images。
基金The Ministry of Land, Transport and Maritime Affairs of Korean Govenment as part of the EAST-I (East Asian Seas Time-series,East/Japan Sea) and OCCAPA (Ocean Chimate Change-Analyses, Projections and Adaptation), through KIOST Project under contract No. PE98742as part of the Development of Technology for CO2 Marine Geological Storage project under contract No. PMS246B
文摘Subinertial fluctuation of a strong northward deep current, which is referred to the Dokdo Abyssal Current (DAC) by Chang et al. (2009), is investigated from current records for about 16.5 and 8.0 months in the Ulle- ung Interplain Gap of the East/lapan Sea. The current below 300 m is bottom-intensified and has nearly depth-independent flow. Near bottom, the spectral peaks of the current were found near 10, 20, and 60 d. The DAC variability near 10 d and 20 d is reasonably consistent with the linear theory of topographic Rossby waves (TRWs) in the following aspects: (1) The motion is columnar and bottom-intensified; (2) the theo- retical cutoff frequency is similar to the observation; (3) The observation-based angles of the wavenumber vector are in good agreement with the theoretical ones. The wavelengths of the TRWs with periods of near 10 d and 20 d near Dokdo are significantly shorter than those with similar timescales in the open oceans (100-250 km). It is primarily due to the weak stratification below 300 m in the East Sea. The deep cur- rent fluctuations with periods of near 10 d and 20 d were accompanied by warm events in the upper layer resulting from eddying processes and/or meandering of the Tsushima Warm Current.
基金The Research Program on Climate Change Adaptation(RECCA)of the Ministry of Education,Culture,Sports,Science and Technology(MEXT)of Japan
文摘In this study the structure and seasonal variations of deep mean circulation in the East/lapan Sea (E/S) were numerically simulated using a mid-resolution ocean general circulation model with two different parameterizations for the eddy-topography interaction (ETI). The strong deep mean circulations observed in the EIS are well reproduced when using the ETI parameterizations. The seasonal variability in the EIS deep layer is shown by using ETI parameterization based on the potential vorticity approach, while it is not shown in the statistical dynamical parameterization. The driving mechanism of the strong deep mean currents in the E/S are discussed by investigating the effects of model grids and parameterizations. The deep mean circulation is more closely related to the baroclinic process and potential vorticity than it is to the wind driven circulation.
文摘In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED to simulate storm surge is validated by comparing model result with observed data. Sensitivity experiments are designed to study the influence of sea level rise on typhoon storm surge. Numerical experiment shows that influence of mean sea level rise on typhoon storm surge is non-uniform spatially and changes as typhoon process differs. Maybe fixed boundary method would weaken the influence of mean sea level rise on storm surge, and free boundary method is suggested for the succeeding study.
基金funded by National Science Foundation of China (No. 40606028)National Basic Research Programs of China (No. 2006CB400601and 2001CB409703)
文摘The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.
文摘AMS14C dating and grain-size analysis for Core FJ04, located at mud area in the North of East China Sea provide us a high-resolution grain-size distribution curve varying with depth and time. This paper got environmental sensitive grain-size group by using standard deviation method, and proved that the selected sensitive grain-size group is an important proxy which can be used to reconstruct intensity of East Asian Winter Monsoon (EAWM). Then we got reconstruction of EAWM evolvement since 3 ka B.P., which revealed two main phases: (1) 3 - 1.15ka B.P., relative weak EAWM with middle frequency fluctuation; (2) 1.15 - 0ka B.P., really strong EAWM with high frequency fluctuation. And 1.15 ka B.P. is a distinct turning point. During the whole period, 11 intense events of EAWM were recorded and correlated well with other climate records, but the response extent was different, which showed consistency of climate change and particularity of region response.