In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of ...To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of Things,artificial intelligence,and big data,can build a smart environmental monitoring system.Remote sensing image classification is an important research content in ecological environmental monitoring.Remote sensing images contain rich spatial information andmulti-temporal information,but also bring challenges such as difficulty in obtaining classification labels and low classification accuracy.To solve this problem,this study develops a transductive transfer dictionary learning(TTDL)algorithm.In the TTDL,the source and target domains are transformed fromthe original sample space to a common subspace.TTDL trains a shared discriminative dictionary in this subspace,establishes associations between domains,and also obtains sparse representations of source and target domain data.To obtain an effective shared discriminative dictionary,triple-induced ordinal locality preserving term,Fisher discriminant term,and graph Laplacian regularization termare introduced into the TTDL.The triplet-induced ordinal locality preserving term on sub-space projection preserves the local structure of data in low-dimensional subspaces.The Fisher discriminant term on dictionary improves differences among different sub-dictionaries through intra-class and inter-class scatters.The graph Laplacian regularization term on sparse representation maintains the manifold structure using a semi-supervised weight graphmatrix,which can indirectly improve the discriminative performance of the dictionary.The TTDL is tested on several remote sensing image datasets and has strong discrimination classification performance.展开更多
Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancem...Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods.展开更多
Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising met...Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.展开更多
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma...Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.展开更多
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif...Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.展开更多
Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs ...Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.展开更多
Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classif...Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classify the modulation scheme of the signals received in the non-cooperative environment according to its sparse representation.Furthermore,we proposed a novel approach called Fast Block Coordinate descent Dictionary Learning(FBCDL).Moreover,the convergence of FBCDL was proved and we find that our proposed method achieves lower complexity.Experimental results indicate that our proposed FBCDL achieves better classification accuracy than traditional methods.展开更多
The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This ...The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals.展开更多
Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is...Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.展开更多
Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary l...Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.展开更多
The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust mo...The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust modified Gaussian mixture model for MS-RSI restoration.First,the multispectral patch is modeled by three-order tensor and high-order singular value decomposition is applied to the tensor.Then the task of MS-RSI restoration is formulated as a minimum sparse core tensor estimation problem.To improve the accuracy of core tensor coding,the core tensor estimation based on the robust modified Gaussian mixture model is introduced into the proposed model by exploiting the sparse distribution prior in image.When applied to MS-RSI restoration,our experimental results have shown that the proposed algorithm can better reconstruct the sharpness of the image textures and can outperform several existing state-of-the-art multispectral image restoration methods in both subjective image quality and visual perception.展开更多
To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modi...To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method.展开更多
Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-dr...Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution.In fact,due to the harsh environment of industrial systems,the collected data from real industrial processes are always affected by many factors,such as the changeable operating environment,variation in the raw materials,and production indexes.These factors often cause the distributions of online monitoring data and historical training data to differ,which induces a model mismatch in the process-monitoring task.Thus,it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring.In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments,a robust transfer dictionary learning(RTDL)algorithm is proposed in this paper for industrial process monitoring.The RTDL is a synergy of representative learning and domain adaptive transfer learning.The proposed method regards historical training data and online testing data as the source domain and the target domain,respectively,in the transfer learning problem.Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework,which can reduce the distribution divergence between the source domain and target domain.In this way,a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment.Such a dictionary can effectively improve the performance of process monitoring and mode classification.Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.展开更多
This paper proposes an adaptive sparsity-based direct position determination (DPD) appoach to locate multiple targets in the case of time-varying channels. The novel feature of this method is to dynamically adjust bot...This paper proposes an adaptive sparsity-based direct position determination (DPD) appoach to locate multiple targets in the case of time-varying channels. The novel feature of this method is to dynamically adjust both the overcomplete basis and the sparse solution based on a two-step dictionary learning (DL) framework. The method first performs supervised offline DL by using the quadratic programming approach, and then the dictionary is continuously updated in an incremental fashion to adapt to the time-varying channel during the online stage. Furthermore, the method does not need the number of emitters a prior. Simulation results demonstrate the performance of the proposed algorithm on the location estimation accuracy.展开更多
In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representat...In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification.展开更多
The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linear...The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.展开更多
Rare bird has long been considered an important in the field of airport security,biological conservation,environmental monitoring,and so on.With the development and popularization of IOT-based video surveillance,all d...Rare bird has long been considered an important in the field of airport security,biological conservation,environmental monitoring,and so on.With the development and popularization of IOT-based video surveillance,all day and weather unattended bird monitoring becomes possible.However,the current mainstream bird recognition methods are mostly based on deep learning.These will be appropriate for big data applications,but the training sample size for rare bird is usually very short.Therefore,this paper presents a new sparse recognition model via improved part detection and our previous dictionary learning.There are two achievements in our work:(1)after the part localization with selective search,the gist feature of all bird image parts will be fused as data description;(2)the fused gist feature needs to be learned through our proposed intraclass dictionary learning with regularized K-singular value decomposition.According to above two innovations,the rare bird sparse recognition will be implemented by solving one l1-norm optimization.In the experiment with Caltech-UCSD Birds-200-2011 dataset,results show the proposed method can have better recognition performance than other SR methods for rare bird task with small sample size.展开更多
Dictionary learning has been applied to face recognition and gets good results. However few works applied dictionary learning in facial expression recognition. This paper investigates the application of K-SVD in facia...Dictionary learning has been applied to face recognition and gets good results. However few works applied dictionary learning in facial expression recognition. This paper investigates the application of K-SVD in facial expression recognition. Since K-SVD focuses on reconstruction and lacks discriminant capability. It has similar classification performance with image pixel values. To address this problem, this paper proposes a Combined Dictionary Scheme, which uses combination of separate dictionaries. This yields better performance than the original single dictionary scheme in terms of both recognition rate and computation complexity.展开更多
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金This research was funded in part by the Natural Science Foundation of Jiangsu Province under Grant BK 20211333by the Science and Technology Project of Changzhou City(CE20215032).
文摘To create a green and healthy living environment,people have put forward higher requirements for the refined management of ecological resources.A variety of technologies,including satellite remote sensing,Internet of Things,artificial intelligence,and big data,can build a smart environmental monitoring system.Remote sensing image classification is an important research content in ecological environmental monitoring.Remote sensing images contain rich spatial information andmulti-temporal information,but also bring challenges such as difficulty in obtaining classification labels and low classification accuracy.To solve this problem,this study develops a transductive transfer dictionary learning(TTDL)algorithm.In the TTDL,the source and target domains are transformed fromthe original sample space to a common subspace.TTDL trains a shared discriminative dictionary in this subspace,establishes associations between domains,and also obtains sparse representations of source and target domain data.To obtain an effective shared discriminative dictionary,triple-induced ordinal locality preserving term,Fisher discriminant term,and graph Laplacian regularization termare introduced into the TTDL.The triplet-induced ordinal locality preserving term on sub-space projection preserves the local structure of data in low-dimensional subspaces.The Fisher discriminant term on dictionary improves differences among different sub-dictionaries through intra-class and inter-class scatters.The graph Laplacian regularization term on sparse representation maintains the manifold structure using a semi-supervised weight graphmatrix,which can indirectly improve the discriminative performance of the dictionary.The TTDL is tested on several remote sensing image datasets and has strong discrimination classification performance.
基金This work is supported by the Laoshan National Laboratoryof ScienceandTechnologyFoundation(No.LSKj202203400)the National Natural Science Foundation of China(No.41874146).
文摘Enhancing seismic resolution is a key component in seismic data processing, which plays a valuable role in raising the prospecting accuracy of oil reservoirs. However, in noisy situations, existing resolution enhancement methods are difficult to yield satisfactory processing outcomes for reservoir characterization. To solve this problem, we develop a new approach for simultaneous denoising and resolution enhancement of seismic data based on convolution dictionary learning. First, an elastic convolution dictionary learning algorithm is presented to efficiently learn a convolution dictionary with stronger representation capability from the noisy data to be processed. Specifically, the algorithm introduces the elastic L1/2 norm as a sparsity constraint and employs a steepest gradient descent strategy to efficiently solve the frequency-domain linear system with substantial computational cost in a half-quadratic splitting framework. Then, based on the learned convolution dictionary, a weighted convolutional sparse representation paradigm is designed to encode the noisy data to acquire an optimal sparse approximation of the effective signal. Subsequently, a high-resolution dictionary with a broadband spectrum is constructed by the proposed parameter scaling strategy and matched filtering technique on the basis of atomic spectrum modeling. Finally, the optimal sparse approximation of the effective signal and the constructed high-resolution dictionary are used for data reconstruction to obtain the seismic signal with high resolution and high signal-to-noise ratio. Synthetic and field dataset examples are executed to check the effectiveness and reliability of the developed method. The results indicate that this method has a more competitive performance in seismic applications compared with the conventional deconvolution and spectral whitening methods.
基金financially supported the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA14020102)the National Natural Science Foundation of China (Nos. 41774125,41530320 and 41804098)the Key National Research Project of China (Nos. 2016YFC0303100,2017YFC0601900)。
文摘Time-domain airborne electromagnetic(AEM)data are frequently subject to interference from various types of noise,which can reduce the data quality and affect data inversion and interpretation.Traditional denoising methods primarily deal with data directly,without analyzing the data in detail;thus,the results are not always satisfactory.In this paper,we propose a method based on dictionary learning for EM data denoising.This method uses dictionary learning to perform feature analysis and to extract and reconstruct the true signal.In the process of dictionary learning,the random noise is fi ltered out as residuals.To verify the eff ectiveness of this dictionary learning approach for denoising,we use a fi xed overcomplete discrete cosine transform(ODCT)dictionary algorithm,the method-of-optimal-directions(MOD)dictionary learning algorithm,and the K-singular value decomposition(K-SVD)dictionary learning algorithm to denoise decay curves at single points and to denoise profi le data for diff erent time channels in time-domain AEM.The results show obvious diff erences among the three dictionaries for denoising AEM data,with the K-SVD dictionary achieving the best performance.
基金This research was funded by the National Natural Science Foundation of China(21878124,31771680 and 61773182).
文摘Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.
文摘Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception.
基金This work was supported by National Natural Science Foundation of China(NSFC)under Grant No.61771299,No.61771322,No.61375015,No.61301027.
文摘Recently,sparse representation classification(SRC)and fisher discrimination dictionary learning(FDDL)methods have emerged as important methods for vehicle classification.In this paper,inspired by recent breakthroughs of discrimination dictionary learning approach and multi-task joint covariate selection,we focus on the problem of vehicle classification in real-world applications by formulating it as a multi-task joint sparse representation model based on fisher discrimination dictionary learning to merge the strength of multiple features among multiple sensors.To improve the classification accuracy in complex scenes,we develop a new method,called multi-task joint sparse representation classification based on fisher discrimination dictionary learning,for vehicle classification.In our proposed method,the acoustic and seismic sensor data sets are captured to measure the same physical event simultaneously by multiple heterogeneous sensors and the multi-dimensional frequency spectrum features of sensors data are extracted using Mel frequency cepstral coefficients(MFCC).Moreover,we extend our model to handle sparse environmental noise.We experimentally demonstrate the benefits of joint information fusion based on fisher discrimination dictionary learning from different sensors in vehicle classification tasks.
基金supported in part by the National Natural Science Foundation of China with grants 61525101,91746301,61631003,61601055the Shenzhen Fundamental Research Fund with grant KQTD2015033114415450
文摘Automatic Modulation Classification(AMC) is an important technology used to recognize the modulation type.A dictionary set was trained via signals with known modulation schemes in cooperative scenarios.Then we classify the modulation scheme of the signals received in the non-cooperative environment according to its sparse representation.Furthermore,we proposed a novel approach called Fast Block Coordinate descent Dictionary Learning(FBCDL).Moreover,the convergence of FBCDL was proved and we find that our proposed method achieves lower complexity.Experimental results indicate that our proposed FBCDL achieves better classification accuracy than traditional methods.
基金This work was supported by the National Natural Science Foundation of China(61773080,61633005)the Fundamental Research Funds for the Central Universities(2019CDYGZD001)Scientific Reserve Talent Programs of Chongqing University(cqu2018CDHB1B04).
文摘The localized faults of rolling bearings can be diagnosed by its vibration impulsive signals.However,it is always a challenge to extract the impulsive feature under background noise and non-stationary conditions.This paper investigates impulsive signals detection of a single-point defect rolling bearing and presents a novel data-driven detection approach based on dictionary learning.To overcome the effects harmonic and noise components,we propose an autoregressive-minimum entropy deconvolution model to separate harmonic and deconvolve the effect of the transmission path.To address the shortcomings of conventional sparse representation under the changeable operation environment,we propose an approach that combines K-clustering with singular value decomposition(K-SVD)and split-Bregman to extract impulsive components precisely.Via experiments on synthetic signals and real run-to-failure signals,the excellent performance for different impulsive signals detection verifies the effectiveness and robustness of the proposed approach.Meanwhile,a comparison with the state-of-the-art methods is illustrated,which shows that the proposed approach can provide more accurate detected impulsive signals.
基金This work was supported by the National Natural Science Foundation of China(62001489)the scientific research planning project of National University of Defense Technology(JS19-04).
文摘Sparse-representation-based single-channel source separation,which aims to recover each source’s signal using its corresponding sub-dictionary,has attracted many scholars’attention.The basic premise of this model is that each sub-dictionary possesses discriminative information about its corresponding source,and this information can be used to recover almost every sample from that source.However,in a more general sense,the samples from a source are composed not only of discriminative information but also common information shared with other sources.This paper proposes learning a discriminative high-fidelity dictionary to improve the separation performance.The innovations are threefold.Firstly,an extra sub-dictionary was combined into a conventional union dictionary to ensure that the source-specific sub-dictionaries can capture only the purely discriminative information for their corresponding sources because the common information is collected in the additional sub-dictionary.Secondly,a task-driven learning algorithm is designed to optimize the new union dictionary and a set of weights that indicate how much of the common information should be allocated to each source.Thirdly,a source separation scheme based on the learned dictionary is presented.Experimental results on a human speech dataset yield evidence that our algorithm can achieve better separation performance than either state-of-the-art or traditional algorithms.
基金supported by the National Natural Science Foundation of China(61801513).
文摘Considering the sparsity of hyperspectral images(HSIs),dictionary learning frameworks have been widely used in the field of unsupervised spectral unmixing.However,it is worth mentioning here that existing dictionary learning method-based unmixing methods are found to be short of robustness in noisy contexts.To improve the performance,this study specifically puts forward a new unsupervised spectral unmixing solution.For the reason that the solution only functions in a condition that both endmembers and the abundances meet non-negative con-straints,a model is built to solve the unsupervised spectral un-mixing problem on the account of the dictionary learning me-thod.To raise the screening accuracy of final members,a new form of the target function is introduced into dictionary learning practice,which is conducive to the growing robustness of noisy HSI statistics.Then,by introducing the total variation(TV)terms into the proposed spectral unmixing based on robust nonnega-tive dictionary learning(RNDLSU),the context information under HSI space is to be cited as prior knowledge to compute the abundances when performing sparse unmixing operations.Ac-cording to the final results of the experiment,this method makes favorable performance under varying noise conditions,which is especially true under low signal to noise conditions.
基金This work was supported by the Project of Shandong Province Higher Educational Science and Technology Program[KJ2018BAN047,Geng,L.]National Natural Science Foundation of China[61801222,Fu,P.]+2 种基金Fundamental Research Funds for the Central Universities[30919011230,Fu,P.]Science and Technology Innovation Program for Distributed Young Talents of Shandong Province Higher Education Institutions[2019KJN045,Guo,Q.]Shandong Provincial Key Laboratory of Network Based Intelligent Computing[http://nbic.ujn.edu.cn/].
文摘The multispectral remote sensing image(MS-RSI)is degraded existing multi-spectral camera due to various hardware limitations.In this paper,we propose a novel core tensor dictionary learning approach with the robust modified Gaussian mixture model for MS-RSI restoration.First,the multispectral patch is modeled by three-order tensor and high-order singular value decomposition is applied to the tensor.Then the task of MS-RSI restoration is formulated as a minimum sparse core tensor estimation problem.To improve the accuracy of core tensor coding,the core tensor estimation based on the robust modified Gaussian mixture model is introduced into the proposed model by exploiting the sparse distribution prior in image.When applied to MS-RSI restoration,our experimental results have shown that the proposed algorithm can better reconstruct the sharpness of the image textures and can outperform several existing state-of-the-art multispectral image restoration methods in both subjective image quality and visual perception.
基金supported in part by the National Natural Science Foundation of China (NO. 61401004, 61271233, 60972038)Plan of introduction and cultivation of university leading talents in Anhui (No.gxfxZ D2016013)+3 种基金the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (No. KJ2010B357)Startup Project of Anhui Normal University Doctor Scientific Research (No.2016XJJ129)the US National Science Foundation under grants CNS1702957 and ACI-1642133the Wireless Engineering Research and Education Center at Auburn University
文摘To address the issue of finegrained classification of Internet multimedia traffic from a Quality of Service(QoS) perspective with a suitable granularity, this paper defines a new set of QoS classes and presents a modified K-Singular Value Decomposition(K-SVD) method for multimedia identification. After analyzing several instances of typical Internet multimedia traffic captured in a campus network, this paper defines a new set of QoS classes according to the difference in downstream/upstream rates and proposes a modified K-SVD method that can automatically search for underlying structural patterns in the QoS characteristic space. We define bagQoS-words as the set of specific QoS local patterns, which can be expressed by core QoS characteristics. After the dictionary is constructed with an excess quantity of bag-QoSwords, Locality Constrained Feature Coding(LCFC) features of QoS classes are extracted. By associating a set of characteristics with a percentage of error, an objective function is formulated. In accordance with the modified K-SVD, Internet multimedia traffic can be classified into a corresponding QoS class with a linear Support Vector Machines(SVM) clas-sifier. Our experimental results demonstrate the feasibility of the proposed classification method.
基金supported by China Postdoctoral Science Foundation(2015M582355)the Doctor Scientific Research Start Project from Hubei University of Science and Technology(BK1418)National Natural Science Foundation of China(61271256)
基金This work was supported in part by the National Natural Science Foundation of China(61988101)in part by the National Key R&D Program of China(2018YFB1701100).
文摘Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge.However,most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution.In fact,due to the harsh environment of industrial systems,the collected data from real industrial processes are always affected by many factors,such as the changeable operating environment,variation in the raw materials,and production indexes.These factors often cause the distributions of online monitoring data and historical training data to differ,which induces a model mismatch in the process-monitoring task.Thus,it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring.In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments,a robust transfer dictionary learning(RTDL)algorithm is proposed in this paper for industrial process monitoring.The RTDL is a synergy of representative learning and domain adaptive transfer learning.The proposed method regards historical training data and online testing data as the source domain and the target domain,respectively,in the transfer learning problem.Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework,which can reduce the distribution divergence between the source domain and target domain.In this way,a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment.Such a dictionary can effectively improve the performance of process monitoring and mode classification.Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.
文摘This paper proposes an adaptive sparsity-based direct position determination (DPD) appoach to locate multiple targets in the case of time-varying channels. The novel feature of this method is to dynamically adjust both the overcomplete basis and the sparse solution based on a two-step dictionary learning (DL) framework. The method first performs supervised offline DL by using the quadratic programming approach, and then the dictionary is continuously updated in an incremental fashion to adapt to the time-varying channel during the online stage. Furthermore, the method does not need the number of emitters a prior. Simulation results demonstrate the performance of the proposed algorithm on the location estimation accuracy.
基金Supported by the National Natural Science Foundation of China(No.61379014)
文摘In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification.
文摘The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text.
文摘Rare bird has long been considered an important in the field of airport security,biological conservation,environmental monitoring,and so on.With the development and popularization of IOT-based video surveillance,all day and weather unattended bird monitoring becomes possible.However,the current mainstream bird recognition methods are mostly based on deep learning.These will be appropriate for big data applications,but the training sample size for rare bird is usually very short.Therefore,this paper presents a new sparse recognition model via improved part detection and our previous dictionary learning.There are two achievements in our work:(1)after the part localization with selective search,the gist feature of all bird image parts will be fused as data description;(2)the fused gist feature needs to be learned through our proposed intraclass dictionary learning with regularized K-singular value decomposition.According to above two innovations,the rare bird sparse recognition will be implemented by solving one l1-norm optimization.In the experiment with Caltech-UCSD Birds-200-2011 dataset,results show the proposed method can have better recognition performance than other SR methods for rare bird task with small sample size.
文摘Dictionary learning has been applied to face recognition and gets good results. However few works applied dictionary learning in facial expression recognition. This paper investigates the application of K-SVD in facial expression recognition. Since K-SVD focuses on reconstruction and lacks discriminant capability. It has similar classification performance with image pixel values. To address this problem, this paper proposes a Combined Dictionary Scheme, which uses combination of separate dictionaries. This yields better performance than the original single dictionary scheme in terms of both recognition rate and computation complexity.