The author, in a series of previous articles, designed the “AB Dome” made of transparent thin film supported by a small additional air overpressure for the purpose of covering a city or other important large install...The author, in a series of previous articles, designed the “AB Dome” made of transparent thin film supported by a small additional air overpressure for the purpose of covering a city or other important large installations or sub-regions. In present article the author offers a variation in which a damaged nuclear station can be quickly covered by such a cheap inflatable dome. By containing the radioactive dust from the damaged nuclear station, the danger zone is reduced to about 2 km2 rather than large regions which requires the resettlement of huge masses of people and which stops indus-try in large areas. If there is a big city (as Tokyo) near the nuclear disaster or there is already a dangerous amount of radioactive dust near a city, the city may also be covered by a large inflatable transparent Dome. The building of a gi-gantic inflatable AB Dome over an empty flat surface is not difficult. The cover is spread on a flat surface and a venti-lator (fan system) pumps air under the film cover and lifts the new dome into place but inflation takes many hours. However, to cover a city, garden, forest or other obstacle course in contrast to an empty, mowed field, the thin film cannot be easily deployed over building or trees without risking damage to it by snagging and other complications. This article proposes a new method which solves this problem. The design is a double film blanket filled by light gas such as, methane, hydrogen, or helium - although of these, methane will be the most practical and least likely to leak. Sections of this AB Blanket are lighter than air and will rise in the atmosphere. They can be made on a flat area serving as an as-sembly area and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, bio-logical and radioactive fallout or particulates. After assembly of the dome is completed, the light gas can be replaced by (heavier but cheaper) air. Two projects for Tokyo (Japan) and Moscow (Russia) are used in this paper for sample computation.展开更多
Discoveries in Charles Darwin’s laboratory led to modern herbicides. Darwin discovered the internal mechanism that directed plants to grow toward sunlight and sources of water. Scientists in Europe and America later ...Discoveries in Charles Darwin’s laboratory led to modern herbicides. Darwin discovered the internal mechanism that directed plants to grow toward sunlight and sources of water. Scientists in Europe and America later called this mechanism a plant’s hormone response system. Administrators and scientists, including Dr. Ezra J. Kraus, the Head of the Botany Department at the University of Chicago and a plant physiologist, suggested on the eve of WWII that weed killers had significant military value as chemical weapons. Dr. Kraus obtained access to a synthetic chemical, 2,4-D, and found that when the chemical was absorbed through the leaves of plants, it destroyed a plant’s hormones. After exposure, the plant experienced rapid and uncontrolled growth, and then the leaves shriveled, died and fell off. Dr. Kraus obtained funding for his Department of Botany research program from Department of Defense (DOD) during World War II (WWII). Camp Detrick (Biological Weapons Laboratory) scientists later obtained samples of newly created 2,4,5-T which contained unknown amounts of the by-product dioxin TCDD. In the 1950s and 1960s, Fort Detrick military scientists formulated the herbicide Agent Orange, which was a 50 - 50 mixture of 2,4-D and 2,4,5-T. These dual purpose herbicides were used by DOD and USDA. American and European farmers in the 1940s used 2,4-D and 2,4,5-T to eliminate weeds from pastureland and cropland. After WWII, synthetic herbicides (and pesticides) development continued in tandem with production of synthetic fertilizers and breeding of high-yield plant varieties. These new agricultural products were then shipped worldwide to increase crop yields, as part of the Green Revolution. This new system of agricultural technologies was intended to eliminate global starvation and increase food security by increasing field and farm crop yields. In contrast, the goal of military use of herbicides, as chemical weapons, was to defoliate jungle forests and destroy food crops as a strategy to win battles and wars. The primary objective of this research study is to describe how agricultural herbicides became tactical chemical weapons. A current assessment will address the environmental impacts of military and environmental chemical weapons on the United States and Vietnam ecosystems and need for additional dioxin TCDD hotspot clean-up efforts.展开更多
Recent publications reveal the disturbing information that a minor edit to an algorithm being used for designing legitimate drug candidates redirected the program in a way that resulted in the surprising design of nov...Recent publications reveal the disturbing information that a minor edit to an algorithm being used for designing legitimate drug candidates redirected the program in a way that resulted in the surprising design of novel chemical warfare agent candidates. Although this outcome was not the result of nefarious intent, and appropriate chemical defense authorities were notified, the potential implications of some misapplication of a drug-design algorithm for nefarious purposes are clear. This Commentary summarizes how otherwise benign Artificial Intelligence (AI) algorithms used for drug discovery can be easily reversed to design novel chemical warfare agents for which no effective antidote will be available, or perhaps even envisioned.展开更多
During the last 60 years, the southern Vietnam environment and Vietnamese living in the Mekong Delta have bio-accumulated arsenic from natural and anthropic (Vietnam Civil War (1962-1965)) sources via their drinking w...During the last 60 years, the southern Vietnam environment and Vietnamese living in the Mekong Delta have bio-accumulated arsenic from natural and anthropic (Vietnam Civil War (1962-1965)) sources via their drinking water (groundwater from tube wells) and food supply leading to an increasing risk of chronic poisoning over time. A synthesis and analysis of publications and records is presented to document the Republic of Vietnam (RV), the official name of the South Vietnam Government, and United States (US) militaries contribution to arsenic levels and toxic spikes in the Vietnam Mekong Delta groundwater. During the Vietnam Civil War, Agent Blue, in powder form, was shipped to Port Saigon, via the Saigon River, and transported to the Tan Son Nhut Air Force base during the Vietnam Civil War. After the official start of the American-Vietnam War (1965-1973) the tactical herbicides were re-routed to Bien Hoa Air Force base (1965 to 1971). Approximately 3.2 million liters of Agent Blue (468,008 kg As) was sprayed or dumped by the RV military with the assistance and support of the Central Intelligence (CIA), US Army and US Navy, during the 1962-1965 Khai Huang (Hamlet) Program. A portion of an additional 4.6 million liters of Agent Blue (664,392 kg of As) was sprayed between 1962 and 1965 by the US Air Force as part of Operation Ranch Hand and prior to the official start of the American-Vietnam War in August 1964. Operation Rand Hand began in 1962 and ended in 1971. The Institute of Medicine estimated a total of 7.8 million liters (1,132,400 kg As) of Agent Blue was applied to southern Vietnam landscape from 1962 to 1971. This total includes both the 1962 to 1965 RV Khai Huang program with the assistance of the CIA, US Army and US Navy, and the total Agent Blue applied by US Air Force Operation Ranch Hand from 1962 to 1971. The primary objective of this study was to document how Agent Blue, the arsenic-based herbicide, became a secret US military and environmental chemical weapon used by the RV and US militaries in southern Vietnam during the Vietnam Civil War years (1962-1965). This assessment found that the anthropic arsenic, including Agent Blue, added a toxic burden to the Mekong Delta soils, surface water, groundwater, drinking water, food supply, and human health. However, there are missing details regarding political decisions and a full accounting of the geographic locations sprayed and amount of Agent Blue used. Vietnam War Archives have paper correspondence and RV herbicide spray records that shed greater light on this period. These records are over 50 years old and need to be electronically scanned, stored, and made available for additional historical analyses.展开更多
Though blessed to be born in a peaceful era, Chi Shuai, a 17-year-old high school student in Qiqihar, northeast China’s Hei-longjiang Province, was unfortunate to fall victim to the Japanese invasion his grandparents...Though blessed to be born in a peaceful era, Chi Shuai, a 17-year-old high school student in Qiqihar, northeast China’s Hei-longjiang Province, was unfortunate to fall victim to the Japanese invasion his grandparents witnessed in the 1930s and 1940s. On August 4, 2003, the boy and 43 others were poisoned by mustard gas leaked from five tanks dug out at a construction site. The five metal tanks were later proved to be left by Japanese invaders in 1945. Li Guizhen, a rag picker who carried away and incised the tanks, died despite all the medical efforts to save his life. The youngest victim in this incident was only eight years old.展开更多
In this paper we highlight how the apparent double coverage of toxins and bioregulators by both the Biological and Toxin Weapons Convention(BTWC)and the Chemical Weapons Convention(CWC)in fact masks a regulatory gap t...In this paper we highlight how the apparent double coverage of toxins and bioregulators by both the Biological and Toxin Weapons Convention(BTWC)and the Chemical Weapons Convention(CWC)in fact masks a regulatory gap that has left such potentially dangerous agents neglected by both the control regimes during a period of rapid advances in relevant chemical,life and associated sciences and technologies.We first review what toxins,bioregulators and other mid-spectrum agents are and why they are of such concern and then examine how they are regulated under the BTWC and CWC.This paper then examines an illustrative range of contemporary chemical and life science research and associated activities of concern drawn from case study research on China,India,Iran,Russia,Syria and the United States,and assesses how the CWC and BTWC States Parties have inadequately addressed these threats.We then examine how both the CWC and BTWC Review Conferences failed to address these long-term challenges,and we end by providing a series of recommendations for how both regimes can be strengthened in this area.展开更多
Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded co...Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded communities are often considered a key determinant of invasion success and failure and we here revise the current evidence that the capacity of seaweed invaders to deter enemies in newly reached environments correlates with their invasion success. Particularly efficient chemical defences have been described for several of the more problematic seaweed invaders during the last decades. However, confirmed cases in which seaweed invaders confronted un-adapted enemies in newly gained environments with deterrents that were absent from these environments prior to the invasion (so-called “novel weapons”) are scarce, although an increasing number of invasive and non-invasive seaweeds are screened for defence compounds. More evidence exists that seaweeds may adapt defence intensities to changing pressure by biological enemies in newly invaded habitats. However, most of this evidence of shifting defence was gathered with only one particular model seaweed, the Asia-endemic red alga Agarophyton vermiculophyllum, which is particularly accessible for direct comparisons of native and non-native populations in common garden experiments. A. vermiculophyllum interacts with consumers, epibionts and bacterial pathogens and in most of these interactions, non-native populations have rather gained than lost defensive capacity relative to native conspecifics. The increases in the few examined cases were due to an increased production of broad-spectrum deterrents and the relative scarcity of specialized deterrents perhaps reflects the circumstance that seaweed consumers and epibionts are overwhelmingly generalists.展开更多
文摘The author, in a series of previous articles, designed the “AB Dome” made of transparent thin film supported by a small additional air overpressure for the purpose of covering a city or other important large installations or sub-regions. In present article the author offers a variation in which a damaged nuclear station can be quickly covered by such a cheap inflatable dome. By containing the radioactive dust from the damaged nuclear station, the danger zone is reduced to about 2 km2 rather than large regions which requires the resettlement of huge masses of people and which stops indus-try in large areas. If there is a big city (as Tokyo) near the nuclear disaster or there is already a dangerous amount of radioactive dust near a city, the city may also be covered by a large inflatable transparent Dome. The building of a gi-gantic inflatable AB Dome over an empty flat surface is not difficult. The cover is spread on a flat surface and a venti-lator (fan system) pumps air under the film cover and lifts the new dome into place but inflation takes many hours. However, to cover a city, garden, forest or other obstacle course in contrast to an empty, mowed field, the thin film cannot be easily deployed over building or trees without risking damage to it by snagging and other complications. This article proposes a new method which solves this problem. The design is a double film blanket filled by light gas such as, methane, hydrogen, or helium - although of these, methane will be the most practical and least likely to leak. Sections of this AB Blanket are lighter than air and will rise in the atmosphere. They can be made on a flat area serving as an as-sembly area and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, bio-logical and radioactive fallout or particulates. After assembly of the dome is completed, the light gas can be replaced by (heavier but cheaper) air. Two projects for Tokyo (Japan) and Moscow (Russia) are used in this paper for sample computation.
文摘Discoveries in Charles Darwin’s laboratory led to modern herbicides. Darwin discovered the internal mechanism that directed plants to grow toward sunlight and sources of water. Scientists in Europe and America later called this mechanism a plant’s hormone response system. Administrators and scientists, including Dr. Ezra J. Kraus, the Head of the Botany Department at the University of Chicago and a plant physiologist, suggested on the eve of WWII that weed killers had significant military value as chemical weapons. Dr. Kraus obtained access to a synthetic chemical, 2,4-D, and found that when the chemical was absorbed through the leaves of plants, it destroyed a plant’s hormones. After exposure, the plant experienced rapid and uncontrolled growth, and then the leaves shriveled, died and fell off. Dr. Kraus obtained funding for his Department of Botany research program from Department of Defense (DOD) during World War II (WWII). Camp Detrick (Biological Weapons Laboratory) scientists later obtained samples of newly created 2,4,5-T which contained unknown amounts of the by-product dioxin TCDD. In the 1950s and 1960s, Fort Detrick military scientists formulated the herbicide Agent Orange, which was a 50 - 50 mixture of 2,4-D and 2,4,5-T. These dual purpose herbicides were used by DOD and USDA. American and European farmers in the 1940s used 2,4-D and 2,4,5-T to eliminate weeds from pastureland and cropland. After WWII, synthetic herbicides (and pesticides) development continued in tandem with production of synthetic fertilizers and breeding of high-yield plant varieties. These new agricultural products were then shipped worldwide to increase crop yields, as part of the Green Revolution. This new system of agricultural technologies was intended to eliminate global starvation and increase food security by increasing field and farm crop yields. In contrast, the goal of military use of herbicides, as chemical weapons, was to defoliate jungle forests and destroy food crops as a strategy to win battles and wars. The primary objective of this research study is to describe how agricultural herbicides became tactical chemical weapons. A current assessment will address the environmental impacts of military and environmental chemical weapons on the United States and Vietnam ecosystems and need for additional dioxin TCDD hotspot clean-up efforts.
文摘Recent publications reveal the disturbing information that a minor edit to an algorithm being used for designing legitimate drug candidates redirected the program in a way that resulted in the surprising design of novel chemical warfare agent candidates. Although this outcome was not the result of nefarious intent, and appropriate chemical defense authorities were notified, the potential implications of some misapplication of a drug-design algorithm for nefarious purposes are clear. This Commentary summarizes how otherwise benign Artificial Intelligence (AI) algorithms used for drug discovery can be easily reversed to design novel chemical warfare agents for which no effective antidote will be available, or perhaps even envisioned.
文摘During the last 60 years, the southern Vietnam environment and Vietnamese living in the Mekong Delta have bio-accumulated arsenic from natural and anthropic (Vietnam Civil War (1962-1965)) sources via their drinking water (groundwater from tube wells) and food supply leading to an increasing risk of chronic poisoning over time. A synthesis and analysis of publications and records is presented to document the Republic of Vietnam (RV), the official name of the South Vietnam Government, and United States (US) militaries contribution to arsenic levels and toxic spikes in the Vietnam Mekong Delta groundwater. During the Vietnam Civil War, Agent Blue, in powder form, was shipped to Port Saigon, via the Saigon River, and transported to the Tan Son Nhut Air Force base during the Vietnam Civil War. After the official start of the American-Vietnam War (1965-1973) the tactical herbicides were re-routed to Bien Hoa Air Force base (1965 to 1971). Approximately 3.2 million liters of Agent Blue (468,008 kg As) was sprayed or dumped by the RV military with the assistance and support of the Central Intelligence (CIA), US Army and US Navy, during the 1962-1965 Khai Huang (Hamlet) Program. A portion of an additional 4.6 million liters of Agent Blue (664,392 kg of As) was sprayed between 1962 and 1965 by the US Air Force as part of Operation Ranch Hand and prior to the official start of the American-Vietnam War in August 1964. Operation Rand Hand began in 1962 and ended in 1971. The Institute of Medicine estimated a total of 7.8 million liters (1,132,400 kg As) of Agent Blue was applied to southern Vietnam landscape from 1962 to 1971. This total includes both the 1962 to 1965 RV Khai Huang program with the assistance of the CIA, US Army and US Navy, and the total Agent Blue applied by US Air Force Operation Ranch Hand from 1962 to 1971. The primary objective of this study was to document how Agent Blue, the arsenic-based herbicide, became a secret US military and environmental chemical weapon used by the RV and US militaries in southern Vietnam during the Vietnam Civil War years (1962-1965). This assessment found that the anthropic arsenic, including Agent Blue, added a toxic burden to the Mekong Delta soils, surface water, groundwater, drinking water, food supply, and human health. However, there are missing details regarding political decisions and a full accounting of the geographic locations sprayed and amount of Agent Blue used. Vietnam War Archives have paper correspondence and RV herbicide spray records that shed greater light on this period. These records are over 50 years old and need to be electronically scanned, stored, and made available for additional historical analyses.
文摘Though blessed to be born in a peaceful era, Chi Shuai, a 17-year-old high school student in Qiqihar, northeast China’s Hei-longjiang Province, was unfortunate to fall victim to the Japanese invasion his grandparents witnessed in the 1930s and 1940s. On August 4, 2003, the boy and 43 others were poisoned by mustard gas leaked from five tanks dug out at a construction site. The five metal tanks were later proved to be left by Japanese invaders in 1945. Li Guizhen, a rag picker who carried away and incised the tanks, died despite all the medical efforts to save his life. The youngest victim in this incident was only eight years old.
基金supported by an Emeritus Fellowship from the Leverhulme Trust(EM-2018-005/10)to Professor Malcolm Dando.
文摘In this paper we highlight how the apparent double coverage of toxins and bioregulators by both the Biological and Toxin Weapons Convention(BTWC)and the Chemical Weapons Convention(CWC)in fact masks a regulatory gap that has left such potentially dangerous agents neglected by both the control regimes during a period of rapid advances in relevant chemical,life and associated sciences and technologies.We first review what toxins,bioregulators and other mid-spectrum agents are and why they are of such concern and then examine how they are regulated under the BTWC and CWC.This paper then examines an illustrative range of contemporary chemical and life science research and associated activities of concern drawn from case study research on China,India,Iran,Russia,Syria and the United States,and assesses how the CWC and BTWC States Parties have inadequately addressed these threats.We then examine how both the CWC and BTWC Review Conferences failed to address these long-term challenges,and we end by providing a series of recommendations for how both regimes can be strengthened in this area.
基金sponsored by the Sino-German Center Science Center,Beijing,China,(GZ1357)the National Key R&D Program of China(2018YFD0900305).
文摘Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded communities are often considered a key determinant of invasion success and failure and we here revise the current evidence that the capacity of seaweed invaders to deter enemies in newly reached environments correlates with their invasion success. Particularly efficient chemical defences have been described for several of the more problematic seaweed invaders during the last decades. However, confirmed cases in which seaweed invaders confronted un-adapted enemies in newly gained environments with deterrents that were absent from these environments prior to the invasion (so-called “novel weapons”) are scarce, although an increasing number of invasive and non-invasive seaweeds are screened for defence compounds. More evidence exists that seaweeds may adapt defence intensities to changing pressure by biological enemies in newly invaded habitats. However, most of this evidence of shifting defence was gathered with only one particular model seaweed, the Asia-endemic red alga Agarophyton vermiculophyllum, which is particularly accessible for direct comparisons of native and non-native populations in common garden experiments. A. vermiculophyllum interacts with consumers, epibionts and bacterial pathogens and in most of these interactions, non-native populations have rather gained than lost defensive capacity relative to native conspecifics. The increases in the few examined cases were due to an increased production of broad-spectrum deterrents and the relative scarcity of specialized deterrents perhaps reflects the circumstance that seaweed consumers and epibionts are overwhelmingly generalists.