During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical m...During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model.展开更多
As a new Ionosphere Associate Analysis Center(IAAC)of the International GNSS Service(IGS),Chinese Academy of Sciences(CAS)started the routine computation of the real-time,rapid,and final Global Ionospheric Maps(GIMs)i...As a new Ionosphere Associate Analysis Center(IAAC)of the International GNSS Service(IGS),Chinese Academy of Sciences(CAS)started the routine computation of the real-time,rapid,and final Global Ionospheric Maps(GIMs)in 2015.The method for the generation of CAS rapid and final GIMs and recent updates are presented in the paper.The quality of CAS post-processed GIMs is assessed during 2015-2018 after the maximum of solar cycle 24.To perform an independent and fair assessment,Jason-2/3 Vertical Total Electron Contents(VTEC)are first used as the references over the ocean.GPS differential Slant TECs(dSTEC)generated from 55 Multi-GNSS Experimental(MGEX)stations of the IGS are also employed,which provides a complementing way to evaluate the ability of electron content models to reproduce the spatial and temporal gradients in the ionosphere.During the test period,Jet Propulsion Laboratory(JPL)GIMs present significantly positive deviations compared to the Jason VTEC and GPS dSTEC.Technical University of Catalonia(UPC)rapid GIM UQRG exhibits the best performance in both Jason VTEC and GPS dSTEC analysis.The CAS GIMs show comparable performance with the results of the first four IAACs of the IGS.As expected,the poor performance of all GIMs is in equatorial regions and the high latitudes of the southern hemisphere.The consideration of generating multi-layer or three-dimensional ionospheric maps is emphasized to mitigate the inadequacy of ionospheric single-layer assumption in the presence of pronounced latitudinal gradients.The use of ionospheric observations from the new GNSS constellations and other space-or ground-based observation techniques is also suggested in the generation of future GIMs,given the sparse GPS/GLONASS stations in the southern hemisphere.展开更多
基金We acknowledge the National Natural Science Foundation of China(grant number 41974013)for financial support.
文摘During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model.
基金the National Key Research Program of China(No.2017YFE0131400)the Alliance of International Science Organizations(No.ANSO-CR-KP-2020-12)+3 种基金the National Natural Science Foundation of China(42074043)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(YJKYYQ20190071)AK acknowledges the financial support from Ministry of Science and Higher Education(MSHE),Poland(MSHE Decision Nos.DIR/WK/2016/2017/05-1 and 59/E-383/SPUB/SP/2019.1)the National Centre for Research and Development,Poland(Decision No.DWM/PL-CHN/97/2019,WPC1/ARTEMIS/2019).
文摘As a new Ionosphere Associate Analysis Center(IAAC)of the International GNSS Service(IGS),Chinese Academy of Sciences(CAS)started the routine computation of the real-time,rapid,and final Global Ionospheric Maps(GIMs)in 2015.The method for the generation of CAS rapid and final GIMs and recent updates are presented in the paper.The quality of CAS post-processed GIMs is assessed during 2015-2018 after the maximum of solar cycle 24.To perform an independent and fair assessment,Jason-2/3 Vertical Total Electron Contents(VTEC)are first used as the references over the ocean.GPS differential Slant TECs(dSTEC)generated from 55 Multi-GNSS Experimental(MGEX)stations of the IGS are also employed,which provides a complementing way to evaluate the ability of electron content models to reproduce the spatial and temporal gradients in the ionosphere.During the test period,Jet Propulsion Laboratory(JPL)GIMs present significantly positive deviations compared to the Jason VTEC and GPS dSTEC.Technical University of Catalonia(UPC)rapid GIM UQRG exhibits the best performance in both Jason VTEC and GPS dSTEC analysis.The CAS GIMs show comparable performance with the results of the first four IAACs of the IGS.As expected,the poor performance of all GIMs is in equatorial regions and the high latitudes of the southern hemisphere.The consideration of generating multi-layer or three-dimensional ionospheric maps is emphasized to mitigate the inadequacy of ionospheric single-layer assumption in the presence of pronounced latitudinal gradients.The use of ionospheric observations from the new GNSS constellations and other space-or ground-based observation techniques is also suggested in the generation of future GIMs,given the sparse GPS/GLONASS stations in the southern hemisphere.