The aim of this research work was to evaluate the potential of using renewable natural feedstock,i.e.,Jatropha curcas oil(JCO)for the synthesis of non-isocyanate polyurethane(NIPU)resin for wood composite applications...The aim of this research work was to evaluate the potential of using renewable natural feedstock,i.e.,Jatropha curcas oil(JCO)for the synthesis of non-isocyanate polyurethane(NIPU)resin for wood composite applications.Commercial polyurethane(PU)is synthesized through a polycondensation reaction between isocyanate and poly-ol.However,utilizing toxic and unsustainable isocyanates for obtaining PU could contribute to negative impacts on the environment and human health.Therefore,the development of PU from eco-friendly and sustainable resources without the isocyanate route is required.In this work,tetra-n-butyl ammonium bromide was used as the activator to open the epoxy ring with 3-Aminopropyltriethoxisylane as a catalyst to yield urethane of JCO(UJCO).The UJCO were characterized by Fourier Transform Infra-Red spectroscopy(FTIR)and their oxirane,and hydroxyl values were measured.The result showed that a decrease in oxirane value was found while the hydroxyl value was increased during the time,confirming that the urethane group was formed.The presence of functional groups in FTIR spectra at wave numbers 1732.08,1562.34,and 3348.42 cm^(−1) indicates the functional groups of C=O(urethane carbonyl),–NH,and–OH,respectively confirmed this finding.The potential applications of NIPU in the wood composite were also outlined.展开更多
The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of...The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of high fossil fuel consumption which plays a pivotal role in the greenhouse effect, Jatropha curcas biodiesel has been considered a potential alternative source of clean energy (biodiesel is carbon neutral). However, the ability of Jatropha curcas, as a candidate source of alternative of clean energy, to grow in marginal and dry soils, has been poorly elucidated. This study, therefore aimed at investigating whether Jatropha curcas leaves could switch from carrying out C<sub>3</sub> photosynthetic pathway to Crassulacean Acid Metabolism (CAM) as a strategy to improve its water deficit tolerance. Thirty-five-day-old Jatropha curcas accessions, from three different climatic zones of Botswana, viz., Mmadinare (Central zone), Thamaga (Southern zone) and Maun (Northern zone), were subjected to water stress, by with-holding irrigation with half-strength Hoagland culture solution. Net photosynthetic rate, transpiration and stomatal conductance were measured at weekly intervals. The leaf pH was measured to determine whether there was a decrease in pH (leaf acidification) of the leaves during the night, when the plants experienced water deficit stress. All the accessions exhibited marked reduction in all the measured photosynthetic characteristics when experience water deficit stress. However, a measurable CO<sub>2</sub> uptake was carried out by leaves of all the accessions, in the wake of marked decreases in stomatal conductance. There is evidence to suggest that when exposed to water stress J. curcas accessions switch from C<sub>3</sub> mode of photosynthesis to CAM photosynthetic pathway. This is attested to by the slightly low leaf pH at night. Thamaga accession exhibited an earlier stomatal closure than the other two accessions. This resulted in Thamaga accession displaying a slightly lower dry weight than both Mmadinare and Maun accessions. It could be concluded that Jatropha curcas appeared to tolerate water deficit stress due to its ability of switching from C<sub>3</sub> photosynthetic pathway to the CAM photosynthetic pathway, but with a cost to biomass accumulation, as demonstrated by slightly more reduced CO<sub>2</sub> assimilation by Thamaga accession, than the other two accessions.展开更多
Curcin, a ribosome-inactivating protein with a molecular weight of about 28.2 kD, which strongly inhibits the protein synthesis in rabbit reticulocyte lysate system with an IC50 value of about (0.19 +/- 0.01) nmol/L, ...Curcin, a ribosome-inactivating protein with a molecular weight of about 28.2 kD, which strongly inhibits the protein synthesis in rabbit reticulocyte lysate system with an IC50 value of about (0.19 +/- 0.01) nmol/L, was purified from the seeds of Jatropha curcas L. The protein has the activity of rRNA N-glycosidase. Degenerate primers were designed based on the N-terminal partial sequence from purified curcin. The full-length curcin cDNA by RT-PCR and 5'-RACE was cloned. The deduced amino acids sequence indicates that a preprotein with 20 amino acid residues is first translated and then processed to a mature protein with 251 amino acids. The deduced amino acids sequence shares homology of 33% and 57% to those of type I ribosome-inactivating proteins (RIPs) and A chain of type II RIPs, respectively. The sequence encoding mature curcin was integrated into the pQE-30 vector for expression in Escherichia coli strain M15 (pREP4). The purified recombinant curcin was able to inhibit protein synthesis in rabbit reticulocyte lysate system.展开更多
[ Objective] The aim of this study was to establish the optimum cpSSR-PCR system for Jatropha curcas Linn. [ Method] cpSSR-PCR amplification system for Jatropha curcas Linn influenced by five factors including Taq DNA...[ Objective] The aim of this study was to establish the optimum cpSSR-PCR system for Jatropha curcas Linn. [ Method] cpSSR-PCR amplification system for Jatropha curcas Linn influenced by five factors including Taq DNA polymerase, Mg^2+ , DNA template, dNTP and primer were optimized from several levels. [ Result] The optimum concentration of 20 μl reaction system was 10 × Buffer, 2.00 mmol/L Mg^2+ , 2 U/μl Taq DNA polymerase, 0.2 mmol/L dNTP, 0.2 μmol/L primer and 35 ng/μl DNA template. [ Conclusion] The optimum annealing temperature for cpSSR-PCR reaction system is 52 ℃, and the cpSSR reaction system is steady and reproducible.展开更多
[Objective] The study aimed to investigate the changes of water status and different responses of osmoregulants during air-drought stress,to better understand mechanisms of drought resistance in Jatropha Curcas L. [Me...[Objective] The study aimed to investigate the changes of water status and different responses of osmoregulants during air-drought stress,to better understand mechanisms of drought resistance in Jatropha Curcas L. [Methods] The 12-day-old J. curcas seedlings were held in a climate chamber at 25/20 ℃(day/night),16 hours illumination,and 75% of relative humidity for air-drought treatment,and the changes of water potential,osmotic potential and the content of soluble sugar,proline,betaine were measured. [Results] Water potential and osmotic potential in leaves of J. curcas seedlings dropped significantly,pressure potential lost during air-drought stress,and the contents of osmoregulants soluble sugar,proline and betaine rose significantly to different extent in the leaves and stems. [Conclusion] Osmoregulants in the leaves and stems respond differently to air-drought stress,and in general leaves are much more responsive to the drought than stems of J. curcas seedlings.展开更多
[Objective] This study was conducted to investigate the microscopic identification characteristics of Jatropha curcas .[Methods] Jatropha curcas was identified by microscopic identification. [Results] The stem bark of...[Objective] This study was conducted to investigate the microscopic identification characteristics of Jatropha curcas .[Methods] Jatropha curcas was identified by microscopic identification. [Results] The stem bark of J. curcas has a thick phellem layer and broad cortex layer; and there are a great deal of dispersed laticifers and many fibers. The parenchymal cells contain clusters of calcium oxalate. In the powder, there are many clusters of calcium oxalate; the secreta is often dispersed; and the stomata are in parallel axle shape. Brown bodies can be seen commonly. [Conclusion] The results of the microscopic identification are reliable. These characteristics could provide an effective basis for the differentiation of this plant from other plants in the same genus and the establishment of its quality standard.展开更多
Yunnan Province is the main distributing area ofJatropha curcas L. This plant is abundant in several drainage areas of the dry-hot, dry-warm and sub-humid valleys in the south subtropical area of Yunnan Province. The ...Yunnan Province is the main distributing area ofJatropha curcas L. This plant is abundant in several drainage areas of the dry-hot, dry-warm and sub-humid valleys in the south subtropical area of Yunnan Province. The seeds that were picked from trees blossoming between April and May and fructifying between September and October will have large seed yield and fine quality. For developing bio-diesel stock forest ofJ. curcas in areas with adaptive climate, seeding measures for afforestation should be taken and techniques on breeding, fast-growing, and high-yielding plantation cultivation are very important.展开更多
Plant flowering and breeding characteristics are important for us to understand the reproduction of plant populations. In this paper, we studied the reproduction characteristics of Jatropha curcas in Yuanjiang County ...Plant flowering and breeding characteristics are important for us to understand the reproduction of plant populations. In this paper, we studied the reproduction characteristics of Jatropha curcas in Yuanjiang County (23°36'1'4, 101°00'E), Yunnan Province. The plant produces flowers in dichasial inflorescences. Normally, the flowers are unisexual, and male and female flowers are produced in the same inflorescence. Only a few male flowers are produced in an inflorescence, and fruits are produced only through pollination between different flowers from the same or different plants. By the treatments of emasculation, bagging and artificial pollination in this experiment, there were few but same fruit set ratios when the inflorescences were emasculated, bagged, or bagged with net, except artificial pollination treatments, which showed that Jatropha curcas could produce fruit through apomixis but not wind pollination. When the inflorescences were unbagged, unemasculated and with free pollination treatments, or bagged, emasculated and with artificial cross-pollination treatments, or unbagged, emasculated and with free pollination treatments, there were many fruits produced. It showed that Jatropha curcas shows outcrossing, is self-compatible, and demanding for pollinators. Normally, the male flowers open first and a few flowers bloom in one day in a raceme. These flowers last a long time in bloom. However, a large number of female flowers open from the third to the fifth day, with some female flowers opening first in a few raceme. This shows a tendency to promote xenogamy and minimize geitonogamy.展开更多
Using degenerate primers and RT-PCR, RACE techniques, a 1491 bp cDNA segment of stearoyl-acyl carrier protein desaturase (SAD) is cloned from developing seeds of Jatropha curcas L. The segment contains a 1191 bp of ...Using degenerate primers and RT-PCR, RACE techniques, a 1491 bp cDNA segment of stearoyl-acyl carrier protein desaturase (SAD) is cloned from developing seeds of Jatropha curcas L. The segment contains a 1191 bp of complete open reading frame (ORF). Analysis in the BLAST on NCBI shows that Jatropha curcas SAD (JSAD) gene encodes a protein precursor composed of a signal peptide of 33 amino acids and a mature peptide of 363 amino acids. The homological analysis shows that JSAD has high level of homology both in nucleotide sequence and in amino acid sequence to other plants SADs. The nucleotide and peptide identity of JSAD to Ricinus communis SAD (RSAD) is up to 89% and 96.2% respectively. Molecular modeling of JSAD indicates that its three-dimensional structure strongly resembled the crystal structure of RSAD.展开更多
Objective: To evaluate antimicrobial activities as well as the phytochemical and lavicidal properties of different parts of Jatropha curcas L.(J. curcas) growing in Mauritius.Methods: Determination of the presence of ...Objective: To evaluate antimicrobial activities as well as the phytochemical and lavicidal properties of different parts of Jatropha curcas L.(J. curcas) growing in Mauritius.Methods: Determination of the presence of phytochemicals in the crude plants extracts by test tube reactions. Disc diffusion method and microdilution method were used to detect the antimicrobial sensitivity and activity(minimal inhibitory concentration). The crude solvent extracts were also tested on the larvae of two insects, Bactrocera zonata and Bactrocera cucurbitae(Diptera, Tephritidae).Results: The antimicrobial activities were significantly dependent for the different crude plant extracts on the thirteen microorganisms tested. For the Gram-positive bacteria, the crude ethyl acetate extract was more efficient compared to the Gram-negative bacteria with both solvents being effective. The crude ethyl acetate extract of J. curcas bark and mature seed oil showed the highest efficacy. The highest mortality percentage was observed after 24 h for both Diptera flies with(66.67 ± 2.89)% of Bactrocera cucurbitae larvae killed by ethyl acetate extract of J. curcas bark.Conclusions: This paper compared the different J. curcas plant sections with respect to the effectiveness of the plant as a potential candidate for new pharmaceuticals. The larvicidal effect was also studied in order to demonstrate the dual purpose of the plant.展开更多
Objective: To analyse the phytochemical contents of leaf, stem bark and root of Jatropha curcas(J. curcas) in four solvent extracts and their proximate and mineral compositions. Methods: Standard analytical procedures...Objective: To analyse the phytochemical contents of leaf, stem bark and root of Jatropha curcas(J. curcas) in four solvent extracts and their proximate and mineral compositions. Methods: Standard analytical procedures were used for the determination of phytochemicals, proximate and mineral compositions of the leaf, stem bark and root extracts of J. curcas. Results: Results of the analysis showed the presence of polyphenols, flavonoids, alkaloids, cardiac glycosides, coumarins, saponins, terpenoids, steroids, triterpenoid saponins, carotenoids, phlobatannins and tannins in the leaf, stem bark and root of all the solvent extracts. Flavonoids were present in the highest amount in the ethyl acetate extracts of the leaf(7.35% ± 0.02%), stem bark(4.12% ± 0.01%) and root(3.35% ± 0.02%) followed by polyphenols in the methanol extracts of leaf(4.62% ± 0.02%), stem bark(2.77% ± 0.05%) and root(2.49% ± 0.02%). Poly-acetylated compounds were absent in all the solvent extracts of the leaf, stem bark and root. However, some anti-nutritional agents such as oxalates, phytates and cyanates were present in all the solvent extracts of the leaf, stem bark and root except the ethyl acetate. Phytates were high in the aqueous solvent of the leaf(6.12% ± 0.00%) but low in the stem bark(1.00% ± 0.05%) and root(0.89% ± 0.03%). Proximate composition showed appreciable amounts of total carbohydrate(36.33% ± 0.72%), crude protein(26.00% ± 0.47%) and reducing sugars(5.87% ± 0.14%) in the leaf, while crude fat was more in the stem bark(16.70% ± 0.30%). There was corresponding substantial energy in the leaf [(1 514.77 ± 20.87) kJ /100 g] and stem bark [(907.00 ± 8.52) kJ /100 g]. Moisture and ash contents of the leaf, stem bark and root were within acceptable limits for the use in drugs formulation. The mineral composition showed substantial amounts of important elements such as Fe, Ca, Na, Mg and Zn. Others were P, K and Se. Conclusions: The outcome of this study suggests that the leaf, stem bark and root of J. curcas have very good medicinal potentials, meet the standard requirements for drug formulation and serve as good sources of energy and nutrients except for the presence of some anti-nutritional elements predominant in the leaf.展开更多
文摘The aim of this research work was to evaluate the potential of using renewable natural feedstock,i.e.,Jatropha curcas oil(JCO)for the synthesis of non-isocyanate polyurethane(NIPU)resin for wood composite applications.Commercial polyurethane(PU)is synthesized through a polycondensation reaction between isocyanate and poly-ol.However,utilizing toxic and unsustainable isocyanates for obtaining PU could contribute to negative impacts on the environment and human health.Therefore,the development of PU from eco-friendly and sustainable resources without the isocyanate route is required.In this work,tetra-n-butyl ammonium bromide was used as the activator to open the epoxy ring with 3-Aminopropyltriethoxisylane as a catalyst to yield urethane of JCO(UJCO).The UJCO were characterized by Fourier Transform Infra-Red spectroscopy(FTIR)and their oxirane,and hydroxyl values were measured.The result showed that a decrease in oxirane value was found while the hydroxyl value was increased during the time,confirming that the urethane group was formed.The presence of functional groups in FTIR spectra at wave numbers 1732.08,1562.34,and 3348.42 cm^(−1) indicates the functional groups of C=O(urethane carbonyl),–NH,and–OH,respectively confirmed this finding.The potential applications of NIPU in the wood composite were also outlined.
文摘The need to mitigate climate change cannot be more emphasized, which arises, as a result of increases in CO<sub>2</sub> emissions due to anthropogenic activities. Given the current world energy problems of high fossil fuel consumption which plays a pivotal role in the greenhouse effect, Jatropha curcas biodiesel has been considered a potential alternative source of clean energy (biodiesel is carbon neutral). However, the ability of Jatropha curcas, as a candidate source of alternative of clean energy, to grow in marginal and dry soils, has been poorly elucidated. This study, therefore aimed at investigating whether Jatropha curcas leaves could switch from carrying out C<sub>3</sub> photosynthetic pathway to Crassulacean Acid Metabolism (CAM) as a strategy to improve its water deficit tolerance. Thirty-five-day-old Jatropha curcas accessions, from three different climatic zones of Botswana, viz., Mmadinare (Central zone), Thamaga (Southern zone) and Maun (Northern zone), were subjected to water stress, by with-holding irrigation with half-strength Hoagland culture solution. Net photosynthetic rate, transpiration and stomatal conductance were measured at weekly intervals. The leaf pH was measured to determine whether there was a decrease in pH (leaf acidification) of the leaves during the night, when the plants experienced water deficit stress. All the accessions exhibited marked reduction in all the measured photosynthetic characteristics when experience water deficit stress. However, a measurable CO<sub>2</sub> uptake was carried out by leaves of all the accessions, in the wake of marked decreases in stomatal conductance. There is evidence to suggest that when exposed to water stress J. curcas accessions switch from C<sub>3</sub> mode of photosynthesis to CAM photosynthetic pathway. This is attested to by the slightly low leaf pH at night. Thamaga accession exhibited an earlier stomatal closure than the other two accessions. This resulted in Thamaga accession displaying a slightly lower dry weight than both Mmadinare and Maun accessions. It could be concluded that Jatropha curcas appeared to tolerate water deficit stress due to its ability of switching from C<sub>3</sub> photosynthetic pathway to the CAM photosynthetic pathway, but with a cost to biomass accumulation, as demonstrated by slightly more reduced CO<sub>2</sub> assimilation by Thamaga accession, than the other two accessions.
文摘Curcin, a ribosome-inactivating protein with a molecular weight of about 28.2 kD, which strongly inhibits the protein synthesis in rabbit reticulocyte lysate system with an IC50 value of about (0.19 +/- 0.01) nmol/L, was purified from the seeds of Jatropha curcas L. The protein has the activity of rRNA N-glycosidase. Degenerate primers were designed based on the N-terminal partial sequence from purified curcin. The full-length curcin cDNA by RT-PCR and 5'-RACE was cloned. The deduced amino acids sequence indicates that a preprotein with 20 amino acid residues is first translated and then processed to a mature protein with 251 amino acids. The deduced amino acids sequence shares homology of 33% and 57% to those of type I ribosome-inactivating proteins (RIPs) and A chain of type II RIPs, respectively. The sequence encoding mature curcin was integrated into the pQE-30 vector for expression in Escherichia coli strain M15 (pREP4). The purified recombinant curcin was able to inhibit protein synthesis in rabbit reticulocyte lysate system.
基金Supported by National Scientific and Technical Supporting Project ofStudies on Superior Species Selecting and Breeding Technique ofJatropha curcasLinn(2007BAD50B01)~~
文摘[ Objective] The aim of this study was to establish the optimum cpSSR-PCR system for Jatropha curcas Linn. [ Method] cpSSR-PCR amplification system for Jatropha curcas Linn influenced by five factors including Taq DNA polymerase, Mg^2+ , DNA template, dNTP and primer were optimized from several levels. [ Result] The optimum concentration of 20 μl reaction system was 10 × Buffer, 2.00 mmol/L Mg^2+ , 2 U/μl Taq DNA polymerase, 0.2 mmol/L dNTP, 0.2 μmol/L primer and 35 ng/μl DNA template. [ Conclusion] The optimum annealing temperature for cpSSR-PCR reaction system is 52 ℃, and the cpSSR reaction system is steady and reproducible.
基金Supported by Special Key R&D Fund from Yunnan Provincial Department of Education (ZD2010004)~~
文摘[Objective] The study aimed to investigate the changes of water status and different responses of osmoregulants during air-drought stress,to better understand mechanisms of drought resistance in Jatropha Curcas L. [Methods] The 12-day-old J. curcas seedlings were held in a climate chamber at 25/20 ℃(day/night),16 hours illumination,and 75% of relative humidity for air-drought treatment,and the changes of water potential,osmotic potential and the content of soluble sugar,proline,betaine were measured. [Results] Water potential and osmotic potential in leaves of J. curcas seedlings dropped significantly,pressure potential lost during air-drought stress,and the contents of osmoregulants soluble sugar,proline and betaine rose significantly to different extent in the leaves and stems. [Conclusion] Osmoregulants in the leaves and stems respond differently to air-drought stress,and in general leaves are much more responsive to the drought than stems of J. curcas seedlings.
基金Supported by Guangxi Zhuang Medicine Quality Evaluation and Standard Research Project(NO.MZY2013023)Guangxi Scientific Research and Technological Development Program(GKG14124002-11-1)+2 种基金High-level-innovation Team and Outstanding Scholar Project of Guangxi Higher Education Institutes-Zhuang Medicine Basic and Clinical Innovation Team(GJR[2014]07)Guangxi Key Laboratory of Zhuang Yao Medicine(GKJZ[2014]32)Zhuang Yao Medicine Collaborative Innovation Center Project(GJKY[2013]20)
文摘[Objective] This study was conducted to investigate the microscopic identification characteristics of Jatropha curcas .[Methods] Jatropha curcas was identified by microscopic identification. [Results] The stem bark of J. curcas has a thick phellem layer and broad cortex layer; and there are a great deal of dispersed laticifers and many fibers. The parenchymal cells contain clusters of calcium oxalate. In the powder, there are many clusters of calcium oxalate; the secreta is often dispersed; and the stomata are in parallel axle shape. Brown bodies can be seen commonly. [Conclusion] The results of the microscopic identification are reliable. These characteristics could provide an effective basis for the differentiation of this plant from other plants in the same genus and the establishment of its quality standard.
文摘Yunnan Province is the main distributing area ofJatropha curcas L. This plant is abundant in several drainage areas of the dry-hot, dry-warm and sub-humid valleys in the south subtropical area of Yunnan Province. The seeds that were picked from trees blossoming between April and May and fructifying between September and October will have large seed yield and fine quality. For developing bio-diesel stock forest ofJ. curcas in areas with adaptive climate, seeding measures for afforestation should be taken and techniques on breeding, fast-growing, and high-yielding plantation cultivation are very important.
文摘Plant flowering and breeding characteristics are important for us to understand the reproduction of plant populations. In this paper, we studied the reproduction characteristics of Jatropha curcas in Yuanjiang County (23°36'1'4, 101°00'E), Yunnan Province. The plant produces flowers in dichasial inflorescences. Normally, the flowers are unisexual, and male and female flowers are produced in the same inflorescence. Only a few male flowers are produced in an inflorescence, and fruits are produced only through pollination between different flowers from the same or different plants. By the treatments of emasculation, bagging and artificial pollination in this experiment, there were few but same fruit set ratios when the inflorescences were emasculated, bagged, or bagged with net, except artificial pollination treatments, which showed that Jatropha curcas could produce fruit through apomixis but not wind pollination. When the inflorescences were unbagged, unemasculated and with free pollination treatments, or bagged, emasculated and with artificial cross-pollination treatments, or unbagged, emasculated and with free pollination treatments, there were many fruits produced. It showed that Jatropha curcas shows outcrossing, is self-compatible, and demanding for pollinators. Normally, the male flowers open first and a few flowers bloom in one day in a raceme. These flowers last a long time in bloom. However, a large number of female flowers open from the third to the fifth day, with some female flowers opening first in a few raceme. This shows a tendency to promote xenogamy and minimize geitonogamy.
基金Project supported by"Tenth Five Years"Key Program of the State Science and Technology Commission in China(Grant Nos.2002BA901A15,2004BA411B01)
文摘Using degenerate primers and RT-PCR, RACE techniques, a 1491 bp cDNA segment of stearoyl-acyl carrier protein desaturase (SAD) is cloned from developing seeds of Jatropha curcas L. The segment contains a 1191 bp of complete open reading frame (ORF). Analysis in the BLAST on NCBI shows that Jatropha curcas SAD (JSAD) gene encodes a protein precursor composed of a signal peptide of 33 amino acids and a mature peptide of 363 amino acids. The homological analysis shows that JSAD has high level of homology both in nucleotide sequence and in amino acid sequence to other plants SADs. The nucleotide and peptide identity of JSAD to Ricinus communis SAD (RSAD) is up to 89% and 96.2% respectively. Molecular modeling of JSAD indicates that its three-dimensional structure strongly resembled the crystal structure of RSAD.
文摘Objective: To evaluate antimicrobial activities as well as the phytochemical and lavicidal properties of different parts of Jatropha curcas L.(J. curcas) growing in Mauritius.Methods: Determination of the presence of phytochemicals in the crude plants extracts by test tube reactions. Disc diffusion method and microdilution method were used to detect the antimicrobial sensitivity and activity(minimal inhibitory concentration). The crude solvent extracts were also tested on the larvae of two insects, Bactrocera zonata and Bactrocera cucurbitae(Diptera, Tephritidae).Results: The antimicrobial activities were significantly dependent for the different crude plant extracts on the thirteen microorganisms tested. For the Gram-positive bacteria, the crude ethyl acetate extract was more efficient compared to the Gram-negative bacteria with both solvents being effective. The crude ethyl acetate extract of J. curcas bark and mature seed oil showed the highest efficacy. The highest mortality percentage was observed after 24 h for both Diptera flies with(66.67 ± 2.89)% of Bactrocera cucurbitae larvae killed by ethyl acetate extract of J. curcas bark.Conclusions: This paper compared the different J. curcas plant sections with respect to the effectiveness of the plant as a potential candidate for new pharmaceuticals. The larvicidal effect was also studied in order to demonstrate the dual purpose of the plant.
文摘Objective: To analyse the phytochemical contents of leaf, stem bark and root of Jatropha curcas(J. curcas) in four solvent extracts and their proximate and mineral compositions. Methods: Standard analytical procedures were used for the determination of phytochemicals, proximate and mineral compositions of the leaf, stem bark and root extracts of J. curcas. Results: Results of the analysis showed the presence of polyphenols, flavonoids, alkaloids, cardiac glycosides, coumarins, saponins, terpenoids, steroids, triterpenoid saponins, carotenoids, phlobatannins and tannins in the leaf, stem bark and root of all the solvent extracts. Flavonoids were present in the highest amount in the ethyl acetate extracts of the leaf(7.35% ± 0.02%), stem bark(4.12% ± 0.01%) and root(3.35% ± 0.02%) followed by polyphenols in the methanol extracts of leaf(4.62% ± 0.02%), stem bark(2.77% ± 0.05%) and root(2.49% ± 0.02%). Poly-acetylated compounds were absent in all the solvent extracts of the leaf, stem bark and root. However, some anti-nutritional agents such as oxalates, phytates and cyanates were present in all the solvent extracts of the leaf, stem bark and root except the ethyl acetate. Phytates were high in the aqueous solvent of the leaf(6.12% ± 0.00%) but low in the stem bark(1.00% ± 0.05%) and root(0.89% ± 0.03%). Proximate composition showed appreciable amounts of total carbohydrate(36.33% ± 0.72%), crude protein(26.00% ± 0.47%) and reducing sugars(5.87% ± 0.14%) in the leaf, while crude fat was more in the stem bark(16.70% ± 0.30%). There was corresponding substantial energy in the leaf [(1 514.77 ± 20.87) kJ /100 g] and stem bark [(907.00 ± 8.52) kJ /100 g]. Moisture and ash contents of the leaf, stem bark and root were within acceptable limits for the use in drugs formulation. The mineral composition showed substantial amounts of important elements such as Fe, Ca, Na, Mg and Zn. Others were P, K and Se. Conclusions: The outcome of this study suggests that the leaf, stem bark and root of J. curcas have very good medicinal potentials, meet the standard requirements for drug formulation and serve as good sources of energy and nutrients except for the presence of some anti-nutritional elements predominant in the leaf.