Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it...Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it may lead to degradation in control efficiency and instability of the control system. In order to avoid these shortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuator time delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. After adding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator time delay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controller satisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposed works very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator time delay.展开更多
When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Tak...When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.展开更多
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ...Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.展开更多
In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified versio...In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified version of the Jeffcott rotor model.The equation of motion describing the harmonic vibrations of the system was obtained using the Euler-Lagrange equations for the associated energy functional.Experiments considering different rotation speeds and axial loads acting on the propulsion shaft system were performed to verify the numerical model.The effects of system parameters such as shaft length and diameter,stiffness and damping coefficients,and cross-section eccentricity were also studied.The cross-section eccentricity increased the displacement response,yet coupled vibrations were not initially observed.With the increase in the eccentricity,the interaction between two vibration modes became apparent,and the agreement between numerical predictions and experimental measurements improved.Given the results,the modified version of the Jeffcott rotor model can represent the coupled torsional-transverse vibration of propulsion shaft systems.展开更多
Rotor system supported by nonlinear bearing such as squeeze film damper(SFD)is widely used in practice owing to its wide range of damping capacity and simplicity in structure.In this paper,an improved and effective In...Rotor system supported by nonlinear bearing such as squeeze film damper(SFD)is widely used in practice owing to its wide range of damping capacity and simplicity in structure.In this paper,an improved and effective Incremental transfer matrix method(ITMM)is first presented by combining ITMM and fast Fourier transform(FFT).Afterwards this method is applied to calculate the dynamic characteristics of a Jeffcott rotor system with SFD.The convergence dificulties incurred caused by strong nonlinearities of SFD has been dealt by adopting a control factor.It is found that for the more general boundary problems where the boundary conditions are not at input and output ends of a chain system,the supplementary equation is necessarily added.Additionally,the Floquet theory is used to analyze the stability and bifurcation type of the obtained periodic solution.The semi-analytical results,including the periodic solutions of the system,the bifurcation points and their types,are in good agreement with the numerical method.Furthermore,the involution mechanism of the quasi-periodic and chaotic motions near the first-order translational mode and the second order bending mode of this system is also clarified by this method with the aid of Floquet theory.展开更多
The current work experimentally explores and then theoretically examines the lateral vibrations of an unbalanced Jeffcott rotor-system working at several unbalance conditions.To this end,three conditions of eccentric ...The current work experimentally explores and then theoretically examines the lateral vibrations of an unbalanced Jeffcott rotor-system working at several unbalance conditions.To this end,three conditions of eccentric masses are considered by using a Bently Nevada RK-4 rotor kit.Measurements of the steady-state as well as the startup data at rigid and flexible rotor states are captured by conducting a setup that mimics the vibration monitoring industrial practices.The linear governing equation of the considered rotor is extracted by adopting the Lagrange method on the basis of rigid rotor assumptions to theoretically predict the lateral vibrations.The dynamic features of the rotor system such as the linearized bearing induced stiffness are exclusively acquired from startup data.It is demonstrated that,with an error of less than 5%,the proposed two-degrees-of-freedom model can predict the flexural vibrations at rigid condition.While at flexible condition,it fails to accurately predict the dynamic response.In contrast to the other works where nonlinear mathematical models with some complexities are proposed to mathematically model the real systems,the present study illustrates the applicability of employing simple models to predict the dynamic response of a real rotor-system with an acceptable accuracy.展开更多
文摘Due to actuator time delay existing in an adaptive control of the active balancing system for a fast speed-varying Jeffcott rotor, if an unsynchronized control force (correction imbalance) is applied to the system, it may lead to degradation in control efficiency and instability of the control system. In order to avoid these shortcomings, a simple adaptive controller was designed for a strictly positive real rotor system with actuator time delay, then a Lyapunov-Krasovskii functional was constructed after an appropriate transform of this sys-tem model, the stability conditions of this adaptive control system with actuator time delay were derived. After adding a filter function, the active balancing system for the fast speed-varying Jeffcott rotor with actuator time delay can easily be converted to a strictly positive real system, and thus it can use the above adaptive controller satisfying the stability conditions. Finally, numerical simulations show that the adaptive controller proposed works very well to perform the active balancing for the fast speed-varying Jeffcott rotor with actuator time delay.
基金Project supported by National Basic Research Program(973 Program)of China(No.2015CB057400)
文摘When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.
基金the National Basic Research Program of China(No.2012CB026000)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)National Science and Technology Major Project(No.2017-IV-0010-0047).
文摘Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.
基金supported by the Scientific and Technological Research Council of Turkey(TUBITAK)2214-A International Doctoral Research Fellowship Programmewhile experiments were performed at the Wuhan University of Technology。
文摘In this study,the coupled torsional-transverse vibration of a propeller shaft system owing to the misalignment caused by the shaft rotation was investigated.The proposed numerical model is based on the modified version of the Jeffcott rotor model.The equation of motion describing the harmonic vibrations of the system was obtained using the Euler-Lagrange equations for the associated energy functional.Experiments considering different rotation speeds and axial loads acting on the propulsion shaft system were performed to verify the numerical model.The effects of system parameters such as shaft length and diameter,stiffness and damping coefficients,and cross-section eccentricity were also studied.The cross-section eccentricity increased the displacement response,yet coupled vibrations were not initially observed.With the increase in the eccentricity,the interaction between two vibration modes became apparent,and the agreement between numerical predictions and experimental measurements improved.Given the results,the modified version of the Jeffcott rotor model can represent the coupled torsional-transverse vibration of propulsion shaft systems.
文摘Rotor system supported by nonlinear bearing such as squeeze film damper(SFD)is widely used in practice owing to its wide range of damping capacity and simplicity in structure.In this paper,an improved and effective Incremental transfer matrix method(ITMM)is first presented by combining ITMM and fast Fourier transform(FFT).Afterwards this method is applied to calculate the dynamic characteristics of a Jeffcott rotor system with SFD.The convergence dificulties incurred caused by strong nonlinearities of SFD has been dealt by adopting a control factor.It is found that for the more general boundary problems where the boundary conditions are not at input and output ends of a chain system,the supplementary equation is necessarily added.Additionally,the Floquet theory is used to analyze the stability and bifurcation type of the obtained periodic solution.The semi-analytical results,including the periodic solutions of the system,the bifurcation points and their types,are in good agreement with the numerical method.Furthermore,the involution mechanism of the quasi-periodic and chaotic motions near the first-order translational mode and the second order bending mode of this system is also clarified by this method with the aid of Floquet theory.
文摘The current work experimentally explores and then theoretically examines the lateral vibrations of an unbalanced Jeffcott rotor-system working at several unbalance conditions.To this end,three conditions of eccentric masses are considered by using a Bently Nevada RK-4 rotor kit.Measurements of the steady-state as well as the startup data at rigid and flexible rotor states are captured by conducting a setup that mimics the vibration monitoring industrial practices.The linear governing equation of the considered rotor is extracted by adopting the Lagrange method on the basis of rigid rotor assumptions to theoretically predict the lateral vibrations.The dynamic features of the rotor system such as the linearized bearing induced stiffness are exclusively acquired from startup data.It is demonstrated that,with an error of less than 5%,the proposed two-degrees-of-freedom model can predict the flexural vibrations at rigid condition.While at flexible condition,it fails to accurately predict the dynamic response.In contrast to the other works where nonlinear mathematical models with some complexities are proposed to mathematically model the real systems,the present study illustrates the applicability of employing simple models to predict the dynamic response of a real rotor-system with an acceptable accuracy.