The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA). Our results revealed the presence...The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA). Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number,location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation,low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution.展开更多
Detailed topographic maps of drainage divides surrounding the Jefferson County, Montana, Boulder River drainage basin were analyzed to determine the nature of drainage systems that preceded today’s Boulder River drai...Detailed topographic maps of drainage divides surrounding the Jefferson County, Montana, Boulder River drainage basin were analyzed to determine the nature of drainage systems that preceded today’s Boulder River drainage system and how the Boulder River drainage system evolved from those earlier drainage systems. The Boulder River studied here drains in a north, east, and south direction to the Jefferson River, which at Three Forks, Montana joins the north-oriented Madison and Gallatin Rivers to form the north-oriented Missouri River. The North American east-west Continental Divide surrounds the Boulder River drainage basin western half and mountainous drainage divides with the Jefferson and Missouri Rivers surround the drainage basin’s eastern half. More than 25 deep mountain passes are notched into these drainage divides and provide evidence of the regional drainage system that preceded the present day Boulder River drainage system. Analysis of pass elevations and of orientations of valleys leading in opposite directions from those mountain passes shows that prior to Boulder River drainage system development immense volumes of south-oriented water moving in anastomosing complexes of diverging and converging channels flowed across the Boulder River drainage basin area and that the Boulder River drainage system evolved as deeper channels progressively captured flow from shallower channels. While not documented in detail crustal warping probably raised Boulder River drainage basin areas relative to adjacent valleys and basins as capture events took place. A water source was not determined, but may have been from a large North American continental ice sheet, although Boulder River drainage basin evolution probably occurred while mid Tertiary sediments were filling adjacent valleys and basins.展开更多
文摘The chromosomal localization of 45S ribosomal RNA genes in Ambystoma jeffersonianum was determined by fluorescence in situ hybridization with 18S rDNA fragment as a probe (FISH-rDNA). Our results revealed the presence of rDNA polymorphism among A.jeffersonianum populations in terms of number,location and FISH signal intensity on the chromosomes. Nine rDNA cytotypes were found in ten geographically isolated populations and most of them contained derivative rDNA sites. Our preliminary study provides strong indication of karyotypic diversification of A.jeffersonianum that is demonstrated by intraspecific variation of 45S rDNA cytotypes. rDNA cytotype polymorphism has been described in many other caudate amphibians. We predict that habitat isolation,low dispersal ability and decline of effective population size could facilitate the fixation and accumulation of variable rDNA cytotypes during their chromosome evolution.
文摘Detailed topographic maps of drainage divides surrounding the Jefferson County, Montana, Boulder River drainage basin were analyzed to determine the nature of drainage systems that preceded today’s Boulder River drainage system and how the Boulder River drainage system evolved from those earlier drainage systems. The Boulder River studied here drains in a north, east, and south direction to the Jefferson River, which at Three Forks, Montana joins the north-oriented Madison and Gallatin Rivers to form the north-oriented Missouri River. The North American east-west Continental Divide surrounds the Boulder River drainage basin western half and mountainous drainage divides with the Jefferson and Missouri Rivers surround the drainage basin’s eastern half. More than 25 deep mountain passes are notched into these drainage divides and provide evidence of the regional drainage system that preceded the present day Boulder River drainage system. Analysis of pass elevations and of orientations of valleys leading in opposite directions from those mountain passes shows that prior to Boulder River drainage system development immense volumes of south-oriented water moving in anastomosing complexes of diverging and converging channels flowed across the Boulder River drainage basin area and that the Boulder River drainage system evolved as deeper channels progressively captured flow from shallower channels. While not documented in detail crustal warping probably raised Boulder River drainage basin areas relative to adjacent valleys and basins as capture events took place. A water source was not determined, but may have been from a large North American continental ice sheet, although Boulder River drainage basin evolution probably occurred while mid Tertiary sediments were filling adjacent valleys and basins.