Objective To compare the characterization and myocardial differentiation capacity of arnniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells ...Objective To compare the characterization and myocardial differentiation capacity of arnniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, a-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities ofWJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, a-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.展开更多
Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their appli...Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their application in the treatment of ischemic stroke,therefore their therapeutic effect requires further verification.In this study,h WJ-MSCs were transplanted into an ischemic stroke rat model via the tail vein 48 hours after transient middle cerebral artery occlusion.After 4 weeks,neurological functions of the rats implanted with h WJ-MSCs were significantly recovered.Furthermore,many h WJ-MSCs homed to the ischemic frontal cortex whereby they differentiated into neuron-like cells at this region.These results confirm that h WJ-MSCs transplanted into the ischemic stroke rat can differentiate into neuron-like cells to improve rat neurological function and behavior.展开更多
Objective: Wharton jelly-derived mesenchymal stem cells (WJMSCs) exhibit multilineage differentiation potential and can be used to treat multiple organs. However, diabetes affects the repair capability of MSCs. The ai...Objective: Wharton jelly-derived mesenchymal stem cells (WJMSCs) exhibit multilineage differentiation potential and can be used to treat multiple organs. However, diabetes affects the repair capability of MSCs. The aim of this study was to evaluate the effect of diabetic patient-derived serum on WJMSC behavior. Methods: WJMSCs at passage 3 were treated with serum derived from type 2 diabetic patients. WJMSCs were characterized for surface markers expression by using immunocytochemistry technique. The effects on cell viability, proliferation, cell death rate, and vascular endothelial growth factor level were assessed by crystal violet staining, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphe-nyltetrazolium bromide (MTT) assay, lactate dehydrogenase assay, and enzyme-linked immuno-sorbent assay, respectively. Oxidative stress was assessed by the estimation of free radical species malondialdehyde (MDA) and enzymes glutathione (GSH), catalase, and superoxide dismutase (SOD). Results: WJMSCs isolated in this study were positive for CD29, CD49, CD73, CD90, CD105, and SSEA4 and negative for CD45 and CD34. Under diabetic stress conditions, WJMSCs showed low viability and high lactate dehydrogenase release. A low level of vascular endothelial growth factor was also observed after diabetic serum treatment. Antioxidant level was also lower in diabetic serum-treated WJMSCs compared to in normal serum-treated WJMSCs. Conclusion: The results of the present study suggest that pre-treatment of WJMSCs with type 2 diabetic serum decreases the survival of WJMSCs. The findings of this study provide insight into diabetes-induced harmful effects on WJMSCs.展开更多
Animal experiments have confirmed that mesenchymal stem cells can inhibit motor neuron apoptosis and inflammatory factor expression and increase neurotrophic factor expression. Therefore, mesenchymal stem cells have b...Animal experiments have confirmed that mesenchymal stem cells can inhibit motor neuron apoptosis and inflammatory factor expression and increase neurotrophic factor expression. Therefore, mesenchymal stem cells have been shown to exhibit prospects in the treatment of amyotrophic lateral sclerosis. However, the safety of their clinical application needs to be validated. To investigate the safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy, 43 patients(16 females and 27 males, mean age of 57.3 years) received an average dose of 0.42 × 106 cells/kg through intrathecal administration at the cervical, thoracic or lumbar region depending on the clinical symptoms. There was a 2 month interval between two injections. The adverse events occurring during a 6-month treatment period were evaluated. No adverse events occurred. Headache occurred in one case only after first injection of stem cells. This suggests that intrathecal injection of Wharton's Jelly-derived mesenchymal stem cells is well tolerated in patients with amyotrophic lateral sclerosis. This study was approved by the Bioethical Committee of School of Medicine, University of Warmia and Mazury in Olsztyn, Poland(approval No. 36/2014 and approval No. 8/2016). This study was registered with the ClinicalTrials.gov(identifier: NCT02881476)on August 29, 2016.展开更多
BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we re...BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential.This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.AIM To understand the radioprotective mechanism of soluble factors secreted by hWJMSCs and identification of their unique genes.METHODS Propidium iodide staining,endogenous spleen colony-forming assay,and survival study were carried out for radioprotection studies.Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation.Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells,embryonic stem cells,and human fibroblasts.Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes.WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes.Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection.Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin(IL)1-α,IL1-β,IL-6,CXCL3,CXCL5,CXCL8,CXCL2,CCL2,FLT-1,and IL-33.It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources.Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims。展开更多
文摘Objective To compare the characterization and myocardial differentiation capacity of arnniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, a-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities ofWJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, a-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.
基金supported by the National Natural Science Foundation of China,No.31171038the Natural Science Foundation of Jiangsu Province of China,No.BK2011385+3 种基金the "333" Program Funding of Jiangsu Province of China,No.BRA2016450the Training Program of Innovation and Entrepreneurship for Undergraduates of Nantong University of China,No.201510304033Z,201610304053Zthe Training Program of Innovation and Entrepreneurship for Graduates of Nantong University of China,No.YKC14050,YKC15046a grant from Funds for the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their application in the treatment of ischemic stroke,therefore their therapeutic effect requires further verification.In this study,h WJ-MSCs were transplanted into an ischemic stroke rat model via the tail vein 48 hours after transient middle cerebral artery occlusion.After 4 weeks,neurological functions of the rats implanted with h WJ-MSCs were significantly recovered.Furthermore,many h WJ-MSCs homed to the ischemic frontal cortex whereby they differentiated into neuron-like cells at this region.These results confirm that h WJ-MSCs transplanted into the ischemic stroke rat can differentiate into neuron-like cells to improve rat neurological function and behavior.
文摘Objective: Wharton jelly-derived mesenchymal stem cells (WJMSCs) exhibit multilineage differentiation potential and can be used to treat multiple organs. However, diabetes affects the repair capability of MSCs. The aim of this study was to evaluate the effect of diabetic patient-derived serum on WJMSC behavior. Methods: WJMSCs at passage 3 were treated with serum derived from type 2 diabetic patients. WJMSCs were characterized for surface markers expression by using immunocytochemistry technique. The effects on cell viability, proliferation, cell death rate, and vascular endothelial growth factor level were assessed by crystal violet staining, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphe-nyltetrazolium bromide (MTT) assay, lactate dehydrogenase assay, and enzyme-linked immuno-sorbent assay, respectively. Oxidative stress was assessed by the estimation of free radical species malondialdehyde (MDA) and enzymes glutathione (GSH), catalase, and superoxide dismutase (SOD). Results: WJMSCs isolated in this study were positive for CD29, CD49, CD73, CD90, CD105, and SSEA4 and negative for CD45 and CD34. Under diabetic stress conditions, WJMSCs showed low viability and high lactate dehydrogenase release. A low level of vascular endothelial growth factor was also observed after diabetic serum treatment. Antioxidant level was also lower in diabetic serum-treated WJMSCs compared to in normal serum-treated WJMSCs. Conclusion: The results of the present study suggest that pre-treatment of WJMSCs with type 2 diabetic serum decreases the survival of WJMSCs. The findings of this study provide insight into diabetes-induced harmful effects on WJMSCs.
基金supported by Instytut Terapii Komórkowych w Olsztynie(Cell Therapies Institute,FamiCord Group)in Olsztyn(to MB,SM,and TS)
文摘Animal experiments have confirmed that mesenchymal stem cells can inhibit motor neuron apoptosis and inflammatory factor expression and increase neurotrophic factor expression. Therefore, mesenchymal stem cells have been shown to exhibit prospects in the treatment of amyotrophic lateral sclerosis. However, the safety of their clinical application needs to be validated. To investigate the safety of intrathecal injection of Wharton's jelly-derived mesenchymal stem cells in amyotrophic lateral sclerosis therapy, 43 patients(16 females and 27 males, mean age of 57.3 years) received an average dose of 0.42 × 106 cells/kg through intrathecal administration at the cervical, thoracic or lumbar region depending on the clinical symptoms. There was a 2 month interval between two injections. The adverse events occurring during a 6-month treatment period were evaluated. No adverse events occurred. Headache occurred in one case only after first injection of stem cells. This suggests that intrathecal injection of Wharton's Jelly-derived mesenchymal stem cells is well tolerated in patients with amyotrophic lateral sclerosis. This study was approved by the Bioethical Committee of School of Medicine, University of Warmia and Mazury in Olsztyn, Poland(approval No. 36/2014 and approval No. 8/2016). This study was registered with the ClinicalTrials.gov(identifier: NCT02881476)on August 29, 2016.
文摘BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells(hWJ-MSCs)have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them.Recently,we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential.This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.AIM To understand the radioprotective mechanism of soluble factors secreted by hWJMSCs and identification of their unique genes.METHODS Propidium iodide staining,endogenous spleen colony-forming assay,and survival study were carried out for radioprotection studies.Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation.Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells,embryonic stem cells,and human fibroblasts.Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes.WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes.Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection.Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin(IL)1-α,IL1-β,IL-6,CXCL3,CXCL5,CXCL8,CXCL2,CCL2,FLT-1,and IL-33.It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources.Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims。