Let a, b, c be relatively prime positive integers such that a^2+ b^2= c^2. Jesmanowicz'conjecture on Pythagorean numbers states that for any positive integer N, the Diophantine equation(aN)x+(b N)y=(cN)zhas n...Let a, b, c be relatively prime positive integers such that a^2+ b^2= c^2. Jesmanowicz'conjecture on Pythagorean numbers states that for any positive integer N, the Diophantine equation(aN)x+(b N)y=(cN)zhas no positive solution(x, y, z) other than x = y = z = 2. In this paper, we prove this conjecture for the case that a or b is a power of 2.展开更多
基金Supported by Grant in Aid for JSPS Fellows(Grant No.25484)
文摘Let a, b, c be relatively prime positive integers such that a^2+ b^2= c^2. Jesmanowicz'conjecture on Pythagorean numbers states that for any positive integer N, the Diophantine equation(aN)x+(b N)y=(cN)zhas no positive solution(x, y, z) other than x = y = z = 2. In this paper, we prove this conjecture for the case that a or b is a power of 2.